
CMG Conference 2004 — Las Vegas, NV

Linux Load Average

REVEALED

A Personal Journey
20,000 Lines Under the Shell

Neil Gunther
Performance Dynamics

Castro Valley, CA 94552
njgunther@perfdynamics.com

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 1

CMG Conference 2004 — Las Vegas, NV

Motivation

load average: 0.02, 0.01, 0.00

Those 3 little numbers have always bugged me (still do)

I wanted to understand how they really work

I did some controlled experiments on Solaris and Linux

The data I produced needed interpretation

I didn’t have access to UNIX a source code (it’s all proprietary)

I used the hyperlinked Linux source on the web [1]

This is that story ...
aI won’t assume you know any UNIX, even if you do

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 2

CMG Conference 2004 — Las Vegas, NV

Depth Markers

While diving 20,000 lines under the shell ...

1. What is Linux vs UNIX?
2. What is this so-called “load average”?
3. How does it work?
4. Is it any good for capacity planning?
5. Load average and the SCO law suit

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 3

CMG Conference 2004 — Las Vegas, NV

What is Linux?

• A modularized operating system written in C

• Only the O/S nucleus or “kernel”

• Talks to the hardware: CPU, disks, RAM, NIC, etc.

But that ↑ is not even equivalent to this ↓

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 4

CMG Conference 2004 — Las Vegas, NV

What is UNIX?

UNIX is an experiment that escaped from the (Bell) labs circa 1975

It has been mutating ever since!

AIX, HP-UX, MacOS X, Solaris, Unixware, ...

It’s a descendent of the M.I.T. Multics project [2, Appendix B]

All UNIX cell lines are proprietary (just like Windows)

The key exceptions are:

• FreeBSD—licensed Berkeley UNIX derivative

• Linux—derived by Linus Torvalds from Minix, not UNIX

We’ll return to the historical aspects on slide 36

In a word, there is no UNIX

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 5

CMG Conference 2004 — Las Vegas, NV

UNIX Cell Lines

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 6

CMG Conference 2004 — Las Vegas, NV

GNU is Neither Unix (nor Linux)

You need a shell ; the thing outside the kernel which provides a
command interface to it. Several standard UNIX shells:

• (Steve) Bourne shell—sh

• (David) Korn shell—ksh

• (Bill Joy’s) C shell—csh

• Turbo C shell—tcsh

• (GNU a) Bash shell—bsh

Linux is usually packaged with the GNU bash
(Bourne Again) shell [3] and other UNIX-like tools
to make a complete UNIX-like operating system

aGNU is an example of a recursive acronym: GNU is not Unix

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 7

CMG Conference 2004 — Las Vegas, NV

Windows Bashing (See [4])

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 8

CMG Conference 2004 — Las Vegas, NV

What is a Load Average?

Embedded in ASCII output of certain UNIX commands:
[pax:~]% uptime

9:40am up 9 days, 10:36, 4 users, load average: 0.02, 0.01, 0.00

And Linux-specific commands:
[pax:~]% procinfo

Linux 2.0.36 (root@pax) (gcc 2.7.2.3) #1 Wed Jul 25 21:40:16 EST 2001 [pax]

Memory: Total Used Free Shared Buffers Cached

Mem: 95564 90252 5312 31412 33104 26412

Swap: 68508 0 68508

Bootup: Sun Jul 21 15:21:15 2002 Load average: 0.15 0.03 0.01 2/58 8557

...

Always three numbers. Why and what do they mean?

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 9

CMG Conference 2004 — Las Vegas, NV

RTFM: Read the Free Manual

[pax:~]% man "load average"

No manual entry for load average

Oops! Let’s try man uptime:
UPTIME(1) Linux User’s Manual UPTIME(1)

NAME

uptime - Tell how long the system has been running.

DESCRIPTION

uptime gives a one line display of the following information. The cur-

rent time, how long the system has been running, how many users are

currently logged on, and the system load averages for the past 1, 5,

and 15 minutes.

...

So, that’s why there are three numbers, but what do they mean?

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 10

CMG Conference 2004 — Las Vegas, NV

Let’s Ask the Gurus

Tim O’Reilly and Crew [5, p.726]

The load average tries to measure the number of active
processes at any time. As a measure of CPU utilization,
the load average is simplistic, poorly defined, but far from
useless.

That’s encouraging!

Adrian Cockcroft [6, p. 229]

The load average is the sum of the run queue length and
the number of jobs currently running on the CPUs. In
Solaris 2.0 and 2.2 the load average did not include the
running jobs but this bug was fixed in Solaris 2.3.

And it can be implemented incorrectly!! (cf. slide 36)

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 11

CMG Conference 2004 — Las Vegas, NV

Graphical Load Average

ORCA [7] tool displays load averages as a time series

But this is just data, not information

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 12

CMG Conference 2004 — Las Vegas, NV

So, What’s an Average Load?

Back to our guru’s ...

Tim O’Reilly et al.

What’s high? ... Ideally, you’d like a load average under,
say, 3, ... Ultimately, ‘high’ means high enough so that you
don’t need uptime to tell you that the system is overloaded.
... different systems will behave differently under the same
load average. ... running a single cpu-bound background job
can bring response to a crawl even though the load avg
remains quite low.

Eesh! ... This reads like it was written by a lawyer.

Nonetheless, their last sentence is 100% correct! (cf. slide 16)

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 13

CMG Conference 2004 — Las Vegas, NV

Blair Zajac (author of ORCA tool [7])

If long term trends indicate increasing figures, more or
faster CPUs will eventually be necessary unless load can be
displaced. For ideal utilization of your CPU, the maximum
value here should be equal to the number of CPUs in the
box.

This is probably the clearest statement of what the load average is
intended to convey to a sys admin.

All three values of the load average should be kept in the neighbor-
hood of the CPU configuration.

But is this really achievable?

The otherwise muddled statements arise because the load average is
not your average kind of average. It’s a time-dependent average
or, as you’ll soon see, it’s a damped time-dependent average.

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 14

CMG Conference 2004 — Las Vegas, NV

My Simple Experiment

Two hot-loops initiated in background on single-CPU Linux box.

Test duration of 1 hour included two phases:

1. CPU pegged for 2100 seconds then processes killed.

2. CPU quiescent for the remaining 1500 seconds.

Perl script to sample all 3 load average metrics every 5 minutes
from uptime output (see slide 9)

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 15

CMG Conference 2004 — Las Vegas, NV

Earlier Experiment on Solaris

• Notice that the max load −→ 1.0

• Some noise in 1-min LA 1 from system demons

• You’re forgiven for thinking that load ≡ CPU utilization

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 16

CMG Conference 2004 — Las Vegas, NV

Experimental Data on Linux

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500 3000 3500 4000

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_1

LAD_1

LAD_5

LAD_15

LAD_15

LAD_5

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 17

CMG Conference 2004 — Las Vegas, NV

Characteristic Profiles

1-minute load average (LAD 1)
reaches value 2.0 at around 300
seconds
5-minute load average (LAD 5)
reaches 2.0 around 1200 seconds

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500 3000 3500 4000

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_1

LAD_1

LAD_5

LAD_15

LAD_15

LAD_5

15-minute load average (LAD 15) would reach 2.0 at ∼ 4500
seconds, but I killed (a UNIX term) both processes at 2100 seconds

Resembles charging and discharging of an electrical capacitor

This what I mean by data is not the same thing as information

You would never see this kind of data in a million years of system
data collection (cf. slide 12)

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 18

CMG Conference 2004 — Las Vegas, NV

Diving Deeper

The question is, why does the experimental data resemble an RC
circuit?

Why does it slowly rise and slowly decay?

To answer this question we need to examine the Linux kernel code

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 19

CMG Conference 2004 — Las Vegas, NV

Depths of the Linux Kernel (See [1])

unsigned long avenrun[3];

624

625 static inline void calc_load(unsigned long ticks)

626 {

627 unsigned long active_tasks; /* fixed-point */

628 static int count = LOAD_FREQ;

629

630 count -= ticks;

631 if (count < 0) {

632 count += LOAD_FREQ;

633 active_tasks = count_active_tasks();

634 CALC_LOAD(avenrun[0], EXP_1, active_tasks);

635 CALC_LOAD(avenrun[1], EXP_5, active_tasks);

636 CALC_LOAD(avenrun[2], EXP_15, active_tasks);

637 }

638 }

The sampling interval of LOAD FREQ is once every 5 HZ ≡ 5 sec

Don’t confuse this with reporting periods: 1, 5, and 15 min

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 20

CMG Conference 2004 — Las Vegas, NV

The Core Function

CALC LOAD is a C macro defined in this code fragment:
58 extern unsigned long avenrun[]; /* Load averages */

59

60 #define FSHIFT 11 /* nr of bits of precision */

61 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */

62 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */

63 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-pt */

64 #define EXP_5 2014 /* 1/exp(5sec/5min) */

65 #define EXP_15 2037 /* 1/exp(5sec/15min) */

66

67 #define CALC_LOAD(load,exp,n) \

68 load *= exp; \

69 load += n*(FIXED_1-exp); \

70 load >>= FSHIFT;

Two questions:

1. What does the CALC LOAD function actually do?

2. What are those magic numbers like EXP 5 = 2014?

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 21

CMG Conference 2004 — Las Vegas, NV

What does CALC LOAD do?

The CALC LOAD function:
67 #define CALC_LOAD(load,exp,n) \

68 load *= exp; \

69 load += n*(FIXED_1-exp); \

is the fixed-point arithmetic version of this equation:

load(t) = load(t− 1) e−
5

60m + n(t) (1− e−
5

60m) (1)

where

• m = 1, 5, 15 is the reporting period in minutes

• load(t) means the load now

• load(t− 1) means the load last time

• n(t) means the number of active processes now

To understand what eqn.(1) does, let’s look at two extreme cases

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 22

CMG Conference 2004 — Las Vegas, NV

Case 1: Empty Run Queue

Start at time t = 0 with no processes active n(0) = 0, so the 2nd

term vanishes.

Let the initial load be load(0) = L > 0.

Then eqn.(1) can be iterated up to time t = T as:

load(1) = Le−
5

60m

load(2) = load(1) e−
5

60m

=
(
Le−

5
60m

)
e−

5
60m

= Le−2(5
60m)

load(3) = Le−3(5
60m)

. . .

load(T) = Le−T(5
60m)

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 23

CMG Conference 2004 — Las Vegas, NV

In general:

load(t) = Le−(5
60m)t (2)

which represents exponential decay (same as RC discharge)

The actual shape is determined by the value of m = 1, 5, 15

Exactly as seen in the experimental data after t = 2100 seconds

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

EMA_15

EMA_1

EMA_5

LAD_15

LAD_1
LAD_5

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 24

CMG Conference 2004 — Las Vegas, NV

Case 2: Occupied Run-Queue

With n(0) = 2 processes the 2nd term dominates eqn.(1)

Iteration produces:

load(t) = 2L(1− e−
5t

60m) (3)

Eqn.(3) is monotonically rising like our experiments. Applying a
little Elec. Eng. theory ...

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_5

LAD_15

LAD_1

EMA_1

EMA_5

EMA_15

• Rise time is approx by

5τRC 1

• Decay constant τRC 1 = 1

min

• Rise time ' 5 min or 300

sec

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 25

CMG Conference 2004 — Las Vegas, NV

Exponential Smoothing

Exponential smoothing is a way to tame highly variable data.
(Available in tools like EXCEL, R/S+, Mathematica)

General form of smoothing equation is:

Y (t)︸︷︷︸
smoothed

= Y (t− 1) + α︸︷︷︸
damping

X(t)︸︷︷︸
raw

−Y (t− 1)

 (4)

By comparison the LA form is:

load(t) = load(t− 1) + e−
5

60m [n(t)− load(t− 1)] (5)

Eqn.(5) is related to (4) via α = 1− exp(− 5
60m)

Since they’re used iteratively, it’s called exponential smoothing

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 26

CMG Conference 2004 — Las Vegas, NV

The Journey So Far

• Here, load refers to the length of the run queue

– including processes in service
– queue is sampled every 5 seconds

• CALC LOAD is a type of smoothing function

• Magic numbers are the weights that control the amount of
smoothing

– Linux uses 10.11 fixed-point arithmetic
– see my paper in these Proceedings for details

• Load average is an exponentially-damped moving average

– moving average is the arithmetic sum of k samples
– EMA is not your average average!

• CALC LOAD puts more weight on recent load samples

• Same function is used for financial forecasting

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 27

CMG Conference 2004 — Las Vegas, NV

About Those Magic Numbers

Remember this gobbledygook?
60 #define FSHIFT 11 /* nr of bits of precision */

61 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */

62 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */

63 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-pt */

64 #define EXP_5 2014 /* 1/exp(5sec/5min) */

65 #define EXP_15 2037 /* 1/exp(5sec/15min) */

1<<FSHIFT is C code-speak for:

Move the binary-1 digit 11 places to the left

You know it as:

Multiply 2 by itself 11 times or 211

CALC LOAD uses fixed point 10.11 format for “efficiency” in the
kernel, which means 11 bits of precision are available for fractions a

aBecause there are 10 + 11 = 21 bits altogether, that can become 21 + 21 = 42 bits when
multiplied, and we only have 32-bits, ... blah, blah, blah

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 28

CMG Conference 2004 — Las Vegas, NV

Dinking with Digits

Consider a decimal fraction like n10 = 0.920044

Suppose we want to express it correct to 3 decimal digits

The procedure is (See [8]):

1. n10 × 103 = 920.044

2. Round down ⇒ 920

3. n10 = 920× 10−3 = 0.920

How many bits are needed to express 3 decimal places?

103 ' 1024 = 210 i.e., 10 bits are needed

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 29

CMG Conference 2004 — Las Vegas, NV

Magic Revealed

EMA damping factor is e−
5

60m

Consider m = 1 then n10 = e−
5
60 = 0.920044 . . .

CALC LOAD uses 11 bits of precision: 211 = 100000000002 = 204810

That’s equivalent to 4 decimal places (actually 3.311)

Using the previous procedure:

1. n10 × 204810 = 1884.25

2. Round down ⇒ 1884

• #define EXP 1 1884 bingo!

3. n10 = 1884× 2048−1
10 = 0.9200

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 30

CMG Conference 2004 — Las Vegas, NV

Coming Up for Air

Most sys admins tend to refer

to and use the m = 1 minute

load average

For queueing models we want

the steady-state average so we

can invoke useful relations like

Little’s law

But that suggests the m = 15

minute load average is more

useful for capacity planning

• What is the relationship between the EMA and Little’s law?

• How else can we use EMA data?

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 31

CMG Conference 2004 — Las Vegas, NV

Time-Averaged Queue Length

Look at load over a long time (as t →∞) and break the time series

into set of columns:

• ∆t . . . column width

• Q(∆t)×∆t . . . sub-area

•
∑

Q(∆t)×∆t . . . total area

The time-averaged queue length:
∑ Q(∆t)×∆t

T → Q

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 32

CMG Conference 2004 — Las Vegas, NV

Steady-State Run Queue

• N : processes
• S: CPU service time (ticks)
• Z: suspended
• X: thoughput
• R: residence time
• Q = XR: Little’s law

CPU
(System time)

S

CPU
(User time)

Run-queue

Expired revisit (V)

Z

X

Extended this timeshare model to fairshare scheduler [2, 9]

Load average is an instantaneous view or snapshot of the
run-queue with the variance (spikes) damped down

Little’s law is a time-averaged steady-state view of the run-queue

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 33

CMG Conference 2004 — Las Vegas, NV

Forecasting Noisy Fingers

Network

7pm peak

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

7/7/99 0:00 7/8/99 0:00 7/9/99 0:00 7/10/99 0:00 7/11/99 0:00 7/12/99 0:00 7/13/99 0:00 7/14/99 0:00 7/15/99 0:00 7/16/99 0:00

Uef f MaxU

• Numero Uno signature in network

data

• Truncated in CPU busy data

• Sample the 1-minute load average

• Treat as instantaneous queue length

• Apply Multivariate Analysis to es-

timate latent demand ρ̂

• Metric variables: X1, X2, . . . , X6

• Coefficients: α1, . . . , α6, β

• ρ̂ = α1X1 + . . . + α6X6 + β

• Noisy fingers emerge as purple

curve [10]

• Other applications of load average

data to workload forecasting and

GRIDs are discussed in my CMG pa-

per [11]

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 34

CMG Conference 2004 — Las Vegas, NV

Better Load Average Trending

0 2 4 6 8 10 12 14
7.8

8
8.2
8.4
8.6
8.8

9
9.2

Elapsed Time = 200

0 2 4 6 8 10 12 14

7

7.2

7.4

7.6

7.8

Elapsed Time = 300

0 2 4 6 8 10 12 14
8.5

9

9.5

10

10.5

Elapsed Time = 150

0 2 4 6 8 10 12 14
8.25

8.5
8.75

9
9.25

9.5
9.75

Elapsed Time = 180

0 2 4 6 8 10 12 14

9
10
11
12
13
14
15

Elapsed Time = 75

0 2 4 6 8 10 12 14

9

10

11

12

13

Elapsed Time = 100

0 2 4 6 8 10 12 14
0
5

10
15
20
25
30
35

Elapsed Time = 10

0 2 4 6 8 10 12 14
8

10

12

14

16

18

Elapsed Time = 50

-14 -12 -10 -8 -6 -4 -2 0
7.8

8
8.2
8.4
8.6
8.8

9
9.2

Time = 200

-14 -12 -10 -8 -6 -4 -2 0

7

7.2

7.4

7.6

7.8
Time = 300

-14 -12 -10 -8 -6 -4 -2 0
8.5

9

9.5

10

10.5

Time = 150

-14 -12 -10 -8 -6 -4 -2 0
8.25

8.5
8.75

9
9.25

9.5
9.75

Time = 180

-14 -12 -10 -8 -6 -4 -2 0

9
10
11
12
13
14
15

Time = 75

-14 -12 -10 -8 -6 -4 -2 0

9

10

11

12

13

Time = 100

-14 -12 -10 -8 -6 -4 -2 0
0
5

10
15
20
25
30
35

Time = 10

-14 -12 -10 -8 -6 -4 -2 0
8

10

12

14

16

18

Time = 50

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 35

CMG Conference 2004 — Las Vegas, NV

Linux, Linus, Lex, and Load

Oh! This is the other Linus

The SCO Group law suit against infringe-

ment of its ownership of UNIX licensing

rights is thought to include Linux

Linus Torvalds has publicly stated that he

wrote all the Linux kernel code

Since it’s a community effort, how can he

be sure?

And who wrote the Linux load average

code?

Performance history to the rescue!

• FreeBSD has no load average implementation, only hooks

• Solaris had the implementation wrong (in the past)

• The load average concept pre-dates UNIX

• CTSS and Multics [12] implemented it circa 1967

• Linus must have rolled his own Q.E.D.

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 36

CMG Conference 2004 — Las Vegas, NV

References

[1] The Linux Cross-Reference project
http://lxr.linux.no/source/kernel/

[2] N.J. Gunther, Analyzing Computer System Performance Using
Perl::PDQ, Springer-Verlag, 2004

[3] Free Software Foundation http://www.gnu.org/

[4] http://cygwin.com/ Cygwin is a Linux-like environment
(bash shell) for Microsoft Windows. N.B. It is not a way to
run native Linux apps on the Windows operating system.

[5] J. Peek and T. O’Reilly and M. Loukides, UNIX Power Tools,
O’Reilly & Assoc., 1997

[6] A. Cockcroft and R. Pettit, Sun Performance and Tuning,
SunSoft Press, 1998

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 37

CMG Conference 2004 — Las Vegas, NV

[7] ORCA tool www.orcaware.com/orca/docs/orcallator.
html#processes_in_run_queue_system_load

[8] N.J. Gunther, “Sins of Precision—Damaging Digits in
Capacity Calculations,” Proc. CMG 2002, Reno, NV

[9] N.J. Gunther, “Capacity Planning for Solaris SRM. ’All I Ever
Want is My Unfair Advantage!’ (And Why You Can’t Have
It),” Proc. CMG 1999, Reno, NV

[10] Guerrilla Capacity Planning See the class schedule at
www.perfdynamics.com/Classes/schedule.html

[11] N.J. Gunther, “Linux Load Average Revealed,” Proc. CMG
2004, Las Vegas, NV

[12] J.H. Saltzer and J.Q. Gintell, “The Instrumentation of
Multics,” 1970
www.multicians.org/InstrumentationPaper.html,

Copyright c© 2004–2005 Performance Dynamics December 3, 2004 38

