

Capacity Planning Boot Camp

Part III: Going Guerrilla

Dr. Neil J. Gunther

Performance Dynamics Company Castro Valley, California www.perfdynamics.com

 $\label{eq:cmg-TSession} CMG-T \ Session \ 425$ CMG 2008 Conference, Las Vegas, Nevada

Going Guerrilla

In this section, I am going to show you how some of the preceding CaP methods have been applied to real-life situations.

Table of Contents

Subject	Slide
Case Study: Sizing Against a Mainframe	4
Case study: Data Warehouse Optimization	13
Case study: Forecasting Web-Backend Demand	22
Summary	32
References	33

Case Study: Sizing Against a Mainframe

How Many Horses?

Circa 1992 at Pyramid Technology [1].

A customer wants to replace an IBM legacy mainframe (IBM 3090-600S) with a Pyramid unix multiprocessor (MIServer ES Series).

How many processors are required to match the CPU horsepower used by the current mainframe?

Find a Common Starting Point

Model 3090-600S is rated at 105 MIPS (IBM LSPR rating).

Pyramid MIServer ES-Series uses 40 MHz R3000 microprocessors. How many IBM MIPS is that?

Historical information:

- Oracle Corp. sponsored a TP1 [2] benchathon in 1990.
- Best in class using ORACLE 6.0 database.
- Amdahl Corp. won the mainframe class.
- Pyramid won the mid-range class with an MIServer T-Series.

Research Public Performance Data

All benchmark runs were audited was Tom Sawyer (whose job was to prevent vendors from white-washing their benchmarks). ☺ Toms consulting company was called Performance Metrics Inc. They had formal written reports which documented the audited TP1 results.

From those reports I learned that Amdahl used a 4-way model 5995-1440 rated at 105 IBM MIPS equivalent (running UTS Unix).

Pyramid used an MIServer 12-way T-Series.

Both platforms ran ORACLE 6.0 RDBMS.

Building the Bridge

Analyze common TP1 data.

Extract TPS conversion factor for mainframe and unix server.

Use as a baseline horsepower rating. Important metric is TPS/MIP.

Scale up across Pyramid machine generations:

- T-series used a proprietary TTL processor @ 10 MHz
- S-series used R3000 @ 25 MHz
- ES-series used R3000 @ 40 MHz

Don't forget to factor in overhead effects on scalability.

Amdahl TP1 Configuration

Part	Description	Quantity
5990	1440 proc board	4
5990	512MB RAM	1
5990	64 channels	1
6100	100 Storage Proc	4
6100	8 Chan Adapts.	4
6380	DASD spindles	60
6880	DASD Cntlr Unit	6
3064	UTS 2.1 O/S	1
3200	Network s/w	1
3200	ORA 6 RDBMS	1
3200	TP Option s/w	1
3200	SQL*Net	1
3200	TCP/IP option	1

Pyramid TP1 Configuration

Part	Description	Quantity
4152	T proc board	12
4091	128MB RAM	1
4008	32MB RAM	1
4062	IPX Cntlr Brd	1
4068	IOP Cntrl Brd	10
6012	SMD 1.1 GB Dsk	40
3064	OSx 5.1a O/S	1
3200	Network s/w	1
3200	ORA 6 RDBMS	1
3200	TP Option s/w	1
3200	SQL*Net s/w	1
3200	TCP/IP option	1

Construct an Excel spreadsheet.

			Sizing By Num	bers (new)		E 8
	A	В	С	D	E	F
1		\$390			RISC	
2	Baseline 1990	Amdahl			Pyramid	
3	Model	5995-1440			T-Series	
4	N-way	4			12	
	Spindles	61			37	
6	MIPS per CPU		IBM			SPEC
	g-factor %		0RA 6.0			ORA 6.0
	Aggregate MIPS		IBM			SPEC
9	Measured TP1	416.0		>	208.5	
10				-		
11	Platform 1991					
	Model				S-Series	1 1
	N-way				12	
	Spindles				37	
	MIPS per CPU					SPEC
	q-factor %					ORA 6.0
	Aggregate MIPS				168.84	SDEC
	Measured TPC-B				700.04	TPS
	Predicted TP1s					TPS
20	FIGUICIEU IFIS				407	1183
	Platform 1992					
21					F0 0 .	
	Model				ES-Series	
	N-way				24	
	Spindles				56	
	MIPS per CPU					SPEC
	g-factor					ORA 7.1
	Aggregate MIPS				326.4	
	Measured TPC-B					TPS
	Predicted TP1s					TPS
	Predicted TPC-A					TPS
	Published TPC-A				645.2	TPS
32						
	Self-Consisten	use of g-scaling t	oget 1 CPU value			
	TP1 per CPU				77.6	
	N-way				24	
36	Predicted TP1s				791.52	
37		N-way	TP1			
38		2	151			
39		4				
40		6	407			
41		8	512	match 390 + 25	% headroom	
42		10	601			▲
43		12	675			-
	🕨 🕨 Sizing By	Numbers (new)	/	1111		▲ ▶ ///
<u> </u>			-1			

Pyramid ES-Series Sizing

Each ES-Series CPU board had 2-CPUs per board.

A 6-way ES server would give similar TP1 rating.

But propose an 8-way includes 25% headroom plus I/O MIPS.

Case study: Data Warehouse Optimization

Data Warehousing and Mining

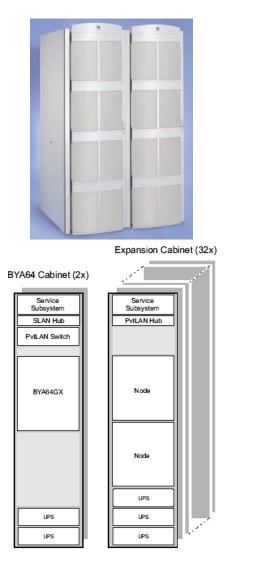
- Data mining is a huge business, e.g., Lexus-Nexus, Google, Amazon.
- Requires organized data in a database; a data warehouse.
- Efficient mining (e.g., DSS, OLAP) relies on optimized performance from well-planned data storage and access.
- The best access performance relies on a form a parallelism for massive queries.
- Queries are read-only and can be cached without consistency problems. No locking required (cf. OLTP: shared writes).
- Parallel reads give the shortest query times.
- How short is short?

Query Performance

Definitions:

FEP: Front-end processors

BEP: Back-end processors with local disks


In general, for N homogeneous sub-queries executing on the BEP, expect parallel query time R(p) to scale hyperbolically with the number of processing nodes p as:

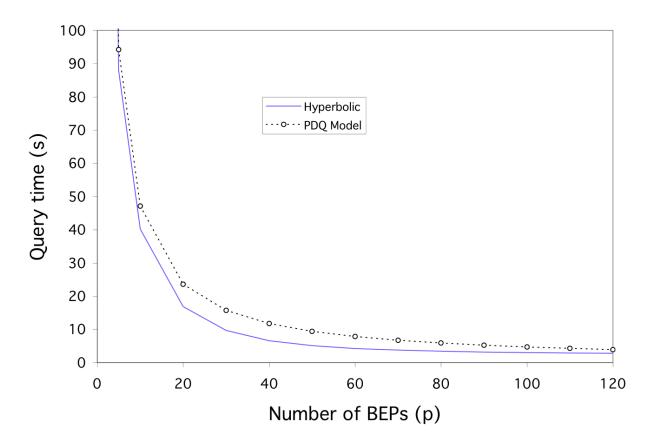
$$R(p) = \frac{R(1)}{p} \tag{1}$$

where R(1) is the query-time on a *uniprocessor*.

NCR Worldmark MPP Architecture

The WorldMark 5150 system can have from 2 to 128 nodes (2 per rack).

The SMP nodes communicate with each other through the BYNET high-speed interconnect.



Parallel Query-Time Models

	Predicted	R(p) (s)
BEPs	Hyperbolic	PDQ
1	471.23	471.23
10	40.18	47.12
20	16.85	23.56
30	9.68	15.71
40	6.60	11.78
50	5.09	9.42
60	4.25	7.85
70	3.75	6.73
80	3.42	5.89
90	3.18	5.24
100	3.02	4.71
110	2.89	4.28
120	2.79	3.93

Predicted Query Times

Parallel Query-Throughputs


$\operatorname{BEP}(p)$	X(p) QPS	$X_{ m sat}(p) { m QPS}$
1	1.66	1.67
10	15.94	16.67
50	53.03	83.33
70	58.19	116.67
90	60.69	150.00
100	61.45	150.00
120	62.07	150.00

The surprising things here is, we can best determine the BEP configuration by examining the predicted query <u>throughput</u>, rather that the response times (as would be naively expected).

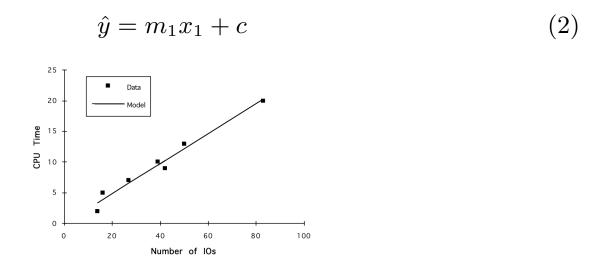
This is the power of performance models.

Optimal BEP Processor Configuration

Note the knee in the saturation throughput curve at 90 BEPs.

How Does It Work?

- **Uniprocessor BEP:** The preprocessing time on the FEP < query time on the BEP
- **Intermediate BEPs:** The preprocessing time on the FEP \simeq query time on the BEP
- **Parallel BEPs:** The preprocessing time on the FEP > query time on the BEP



Case study: Forecasting Web-Server Demand

Multivariate Linear Regression

In Part 1 we looked at a 2-dimensional regression model:

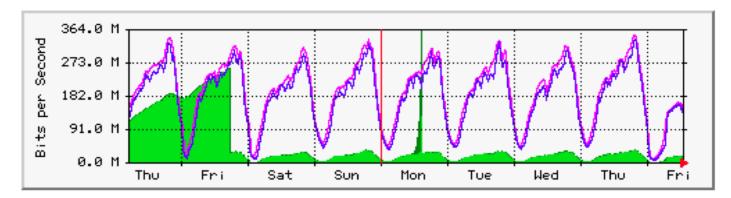
This time were going to make a 7-dimensional model:

$$\hat{y} = m_1 x_1 + \dots + m_4 x_4 + c \tag{3}$$

The 4 random variables x_i are called *regressors*, and y is called the *response* variable [3]. The "hat" denotes an estimate based on the x's.

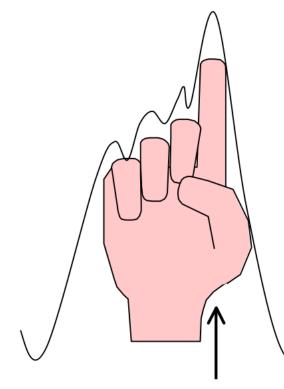
The Measured CPU Utilization Data

Heres a back-end database server for a major web site.



It's a 64-way E10K Starfire and it's saturated almost every day. How much CPU capacity is effectively being used?

Other Data Sources


How much CPU capacity is effectively being used? We can't tell because CPU utilization is bounded by 100

But other data sources (MRTG in this case) such as network bandwidth, which is not (yet) saturated, reveal a certain kind of daily traffic profile.

"Numero Uno" Signature

7pm peak

Shows a distinct peak around 7pm PDT.

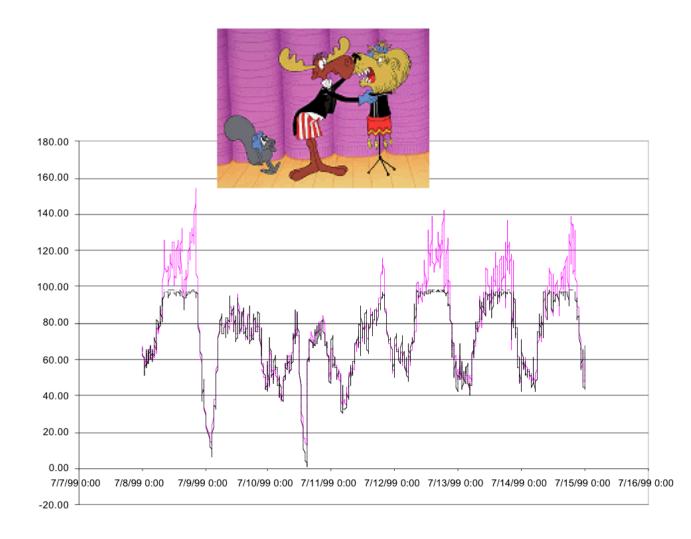
Renditions of this load characteristic seen on all ma jor website systems.

Servers are more likely to be throttled than networks.

Noisy Fingers

Its as if the numero uno fingers have been amputated in the raw CPU performance data. We would like to surgically re-attach those fingers.

But how could that be possible? Like Bullwinkle, it would require pulling a rabbit out of the hat.



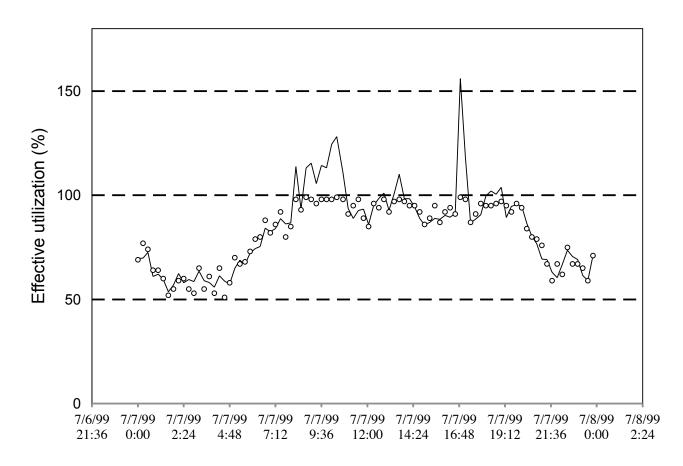
That's where the multivariate regression comes in.

But because it's a statistical technique, the reconstruction will produce *noisy* fingers.

Bullwinkle's Rabbit

Excel Spreadsheet of Selected Metrics

0	A	В	C	D	E	F	G	Н		J	
1	DateTime	AvgU	MaxU	MinU	AvgQ	MaxQ	MinQ	SumQ			
2	9/29/99 0:00	25.25	32	19	16.45	18.96	15.04	131.56		SUMMARY OUTP	UΤ
3	9/29/99 0:16	27.25	45	11	17.01	22.49	14.18	136.08			
4	9/29/99 0:32	47.12	50	42	29.52	33.32	27.07	236.13		Regression	n St
5	9/29/99 0:48	45.88	53	38	27.29	32.09	24.62	218.29		Multiple R	(
5	9/29/99 1:04	45.25	53	40	29.88	34.12	27.42	239.04		R Square	(
7	9/29/99 1:20	50.88	56	45	32.84	35.76	30.58	262.73		Adjusted R Squa	1
B	9/29/99 1:36	52.25	60	48	33.45	37.02	30.88	267.56		Standard Error	1
9	9/29/99 1:52	54.5	72	46	36.43	42.95	30.75	291.42		Observations	
0	9/29/99 2:08	57.12	63	49	37.5	42.51	33.7	299.98			
1	9/29/99 2:24	56.75	62	49	37.69	40.25	34.95	301.55		ANOVA	
2	9/29/99 2:40	48.25	52	45	32.43	37.21	28.72	259.43			
3	9/29/99 2:56	54.25	63	48	35.21	38.14	32.82	281.71		Regression	
4	9/29/99 3:12	44.75	57	34	29	38.76	24.06	232.02		Residual	
5	9/29/99 3:28	54.5	70	39	32.44	40.85	23.54	259.51		Total	
6	9/29/99 3:44	48.25	60	37	33.68	40.62	28	269.41			
7	9/29/99 4:00	43.38	64	35	27.91	33.89	24.81	223.25			(
8	9/29/99 4:16	45.25	60	32	28.86	33.58	24.09	230.9		Intercept	
9	9/29/99 4:32	45.88	52	42	30.38	35.03	26.98	243.04		MaxU	
0	9/29/99 4:48	50.88	65	41	30.78	37.69	26.21	246.27		MinU	
1	9/29/99 5:04	48.12	60	41	31.04	34.74	27.77	248.35		AvgQ	(
2	9/29/99 5:20	56.5	73	42	34.81	43.73	28.41	278.5		MaxQ	-
3	9/29/99 5:36	45.25	52	35	29.57	37.26	25.06	236.6		MinQ	-1
4	9/29/99 5:52	46.88	59	37	28.94	33.6	23.46	231.5		SumQ	-3
5	9/29/99 6:08	46.38	52	40	31.45	34.93	28.96	251.63			
6	9/29/99 6:24	46.12	51	40	30.51	34.2	29.16	244.11			
7	9/29/99 6:40	47.5	56	39	28.96	31.63	27.87	231.66			
		▶ ▶	Rgn Coef						Bk Bul		A



Excel ANOVA Table Excel ANOVA Table

Θ	00		· · ·	MultiVarReg		-	_	
\$	J	K	L	M	N	0	Р	Q
1		_						
2	SUMMARY OUTPL	Л						
3								
4	Regression							
5	Multiple R	0.99216266						
6	R Square	0.98438674						
7	Adjusted R Squa							
8	Standard Error	1.11808743						
9	Observations	90						
10								
11	ANOVA							
12		df	SS	MS	F	Significance F		
13	Regression	6	6541.86692	1090.31115	872.165542	9.6049E-73		
14	Residual	83	103.759919	1.2501195				
15	Total	89	6645.62684					
16								
17		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0
18	Intercept	1.3240455	0.75942325	1.74348822	0.08495121	-0.18641722	2.83450822	-0.186417
19	MaxU	0.22818773	0.02407508	9.47817141	7.2199E-15	0.18030335	0.27607211	0.180303
20	MinU	0.25784123	0.02501249	10.3084996	1.6063E-16	0.20809238	0.30759008	0.208092
21	AvgQ	26.0945498	39.6325319	0.65841238	0.51209543	-52.7329836	104.922083	-52.73298
22	MaxQ	-0.05100836	0.09029699	-0.56489552	0.57366849	-0.23060549	0.12858876	-0.230605
23	MinQ	-0.15435786	0.11931225	-1.29373015	0.19934731	-0.3916652	0.08294948	-0.39166
24	SumQ	-3.14335044	4.95763341	-0.63404253	0.52779665	-13.0038866	6.7171857	
25								
26								
27								

One Day Sample

Plot of \hat{y} for a 24-hour period shows demand over 1.5 servers at around 16:48 hours.

Summary of Part III

Being able to dig into historical performance information can be very important.

It was critical to being able to build a bridge between mainframe and unix server MIPS (slide 4).

Thats why keeping your own personal performance database was mentioned in Part I.

As the DSS example (slide 13) showed, optimizing response time is sometimes best done by understanding the knees in the throughput characteristic.

Details concerning multivariate regression (slide 23) can be found in Chap. 8 of [4].

References

- [1] en.wikipedia.org/wiki/PyramidTechnology,
- [2] The TP1 benchmark was a precursor of the current TPC benchmarks. See www.tpc.org/information/about/history.asp
- [3] Box, G. E. P., Hunter, W. G., and Hunter, J. S., Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, Wiley 1978
- [4] N. J. Gunther, *Guerrilla Capacity Planning*, Springer-Verlag, 2007