
When Load Testing Large User Population Web Applications
The Devil Is In the (Virtual) User Details

James F Brady
Capacity Planner for the State of Nevada

jfbrady@admin.nv.gov

Many times load testing is dismissed as a waste of time and money because
past results didn't conform to real world experience when the application
went live. Sometimes it’s because the test suite is too narrow but often it is
due to the approach used to produce traffic and the way results are
interpreted. This discussion focuses on the latter situation because a lack of
testing scope is an obvious limitation but poor quality traffic and improper
analysis techniques are subtle shortcomings that impact test credibility in
ways that aren’t always clear until the live application reveals them.

1.0 Introduction
When load testing large user population web
applications it is easy to get caught up in load tool
mechanics and fail to insure the traffic offered to the
target application has real world properties. This paper
illustrates implementation techniques which emphasize
high quality test traffic creation and concise application
scalability analysis. A focus on traffic quality and concise
analysis can alter the way the load tool’s virtual users
are implemented in test scenarios and may change their
commonly accepted role in results reporting.

The discussion begins with an overview of the steps
normally taken to perform a web application load test.
This review is followed by a description of virtual users
from a traffic flow perspective and how that flow
compares with real user behavior. This comparison
leads to a fundamental principles based technique for
quantifying traffic quality that expands into a set of
quality improvement recommendations. The virtual
user’s role in scalability testing is discussed next using
queuing concepts as motivation. Then, an example load
test is provided which illustrates statistically meaningful
scalability analysis and demonstrates results reporting
within the context of the traffic quality improvement
methods described. The summary section puts the
virtual user’s role into perspective and ends with some
concluding remarks.

2.0 Traditional Load Testing Mechanics
Web application load testing is generally performed
using one or a few computers running load generation
software. The intent is to simulate the web page request

behavior of end users accessing an application running
on a target platform. Data collected from the tests are
used to evaluate the performance characteristics of the
application from a response time service level and
platform scalability perspective.

Load generators apply the concept of a virtual user as a
substitute for a real user. The implementation of this
concept is usually a process thread intended to mimic
the behavior of an actual user making application
requests in a particular event sequence with a
representative amount of “think” time between the
previous response and the next request.

Setting up and running load tests is generally viewed as
a mechanical process whose primary steps include:

1. Identify the application event sequence of
interest.

2. Record the sequence with the load tool’s
recording software.

3. Edit the recorded event sequence file to:
a. Remove extraneous web events while

keeping those which are primary to the
application;

b. Add assertion strings to each event
insuring responses are correct;

c. Implement load tool timers to mimic
end user think times.

4. Run a series of tests incrementally increasing
virtual users from run to run until the expected
number of active users to be supported is
reached, a service level constraint is exceeded,
or some target system resource is exhausted.

5. Develop a functional relationship between target

system resource consumption levels and
number of virtual users supported.

6. Report active users supported and resource
scalability results to decision makers using a
mixture of graphs, tables, and text.

3.0 Virtual Users Vs Real Active Users
One of the primary objectives of any load test is to
determine the number of active users supported by the
application environment. The key testing statistic
normally used to make this determination is the virtual
user count that meets the service objective. Because
they have such a significant role in simulating workload,
what exactly are virtual users and how do they differ
from the real thing? They are described in the load
testing literature as simulated users which mimic the
function and timing attributes of real users.

Virtual users, when applied to web application load
testing, are a fixed set of load tool process threads
running on a computer performing GET and POST
requests in a closed loop while sleeping a think time
between one response and the next request. The usual
approach is to have all threads within a thread group
perform the same set of requested events in sequence
over and over during the testing period.

The traffic flow associated with this environment is
shown in Figure 1 where . represent the separate
virtual user threads that make GET or POST requests.

 .

 . . … .

Figure 1: Virtual User Traffic Flow

Each . performs the following steps in a closed loop:
1. Make a web request of the target system.
2. Wait for and time the response (RT).
3. Sleep for the assigned think time (TT).
4. Wake up and wait on the operating system

scheduler’s ready to run queue.
5. Execute the next event in the sequence when

run by the operating system.

Think times are either fixed or drawn from some
probability distribution provided by the load tool software.
The one dotted line square surrounding all the .
represents the single computer operating system tasked
with running the full set of virtual user threads.

How does a set of real active users differ from the
simulated virtual users intended to represent them?
Figure 2 is a traffic flow diagram of the real active user
environment where a real user is a - Vs its virtual user
counterpart..

 - -

 -

 - - … -

Figure 2: Real Active User Traffic Flow
Some of the lower portion of Figure 2 looks similar in
structure to Figure 1 except its TT/RT loop shows each
- surrounded by a dotted line square indicating they
have separate computer operating system
environments. Figure 2 also contains the “User
Population” loop which indicates some web requests
offered to the target system come from the total
population of users.

Figure 2 illustrates the fact that real active users are a
variable size set of concurrent users which move in and
out of the active user pool performing GET and POST
requests on separate computers while thinking between
each request. Active users supported are the expected
number of real users actively making requests of the
application at the objective service level.

What impact do these user differences have on the
traffic pattern offered to the target application? The main
differences can be categorized in three general areas:

Target
System

Request Queue

RT

TT

. = Virtual User = Computer O/S
TT = Think Time RT = Response Time

Target
System

User Population

Request Queue

RT

TT

RT

- = Active User = Computer O/S
TT = Think Time RT = Response Time

Neil Gunther

Neil Gunther

Neil Gunther

Neil Gunther

Neil Gunther

Neil Gunther

Neil Gunther

1. Computer Resource Sharing,
2. User Participation,
3. User Relationships.

3.1 Computer Resource Sharing

Since the virtual user threads, .,all share the same
computing resources, distortions in web page request
timing and volume may take place due to excessive
queuing for limited resources. For example, the sharing
of processing execution resources increases contention
for CPU cycles, adds to operating system run list size,
and magnifies process thread scheduling complexity.

3.2 User Participation
The real users have an extended set of participation
rules implied by the user population cloud. One of the
implications of this population participation is the real
users are not self-throttling like the virtual user TT/RT
closed loop. Traffic can be offered to the Figure 2 target
system in an unbridled way that will cause it to overload.

Although not shown pictorially, the Figure 1 and Figure 2
TT/RT closed loops differ in the way events are
processed because real users are unlikely to follow the
fixed order normally set up in virtual user scripts. The
additional variety real users offer the target system is
partially due to their broader set of web page options but
also results from their being independent entities.

3.3 User Relationships
User individualism within its TT/RT closed loop
combined with its population cloud requests implies real
users behave far more independently than the virtual
users in the typical load script. Therefore, load testing
setups which make web page request timing less
synchronous are likely to produce a better traffic pattern
and lead to results that have a greater chance of
matching real world experience.

Given this desire to maximize request timing
independence, is there an easy way to recognize when
independence exists? If there is a way to do that what
modifications to the load test environment help achieve
independence when it doesn’t exist?

4.0 Quantifying Traffic Quality
Mimicking the independent behavior of real users can be
difficult to accomplish in the limited resource closed loop
environment of Figure 1 so it is important to understand
the characteristics of independent events being offered
to the target system. This understanding can be used as
a guideline for the construction of load testing scripts
which generate independent requests when executed by
a set of virtual user threads. It can also be leveraged to
develop methods for determining when request
independence is reflected in data produced by test runs
performed.

The first step in gaining these insights is to understand
the mathematics of independent requests and how that
mathematics relates to the aggregate traffic flowing to
the target system.

Mathematically, transactions that are produced by a
large population of users which have no coercion
between them when pressing the enter key conform to
the well known Poisson process [WIKI10]. To the extent
that real user behavior is consistent with this no coercion
principle, the characteristics of the Poisson process can
be used to guide the construction of virtual user scripts
and determine how well the aggregate traffic produced
by them yields a real world pattern.

The Poisson process is characterized by times between
arrivals being Negative-Exponentially distributed and the
number of arrivals in constant length intervals
possessing Poisson distribution attributes. This is a very
powerful result and the basic arrival assumption for most
practical queuing models including the well known A.K.
Erlang formulas [WIKI12] applied in the telephone
industry to size usage sensitive resources. A time line of
arriving events under these conditions looks intuitively
like they are occurring in bunches with intervals that are
somewhere between evenly spaced and simultaneous.

Figure 3, is a pictorial representation of the Poisson
process often referred to as a random arrivals pattern
where the inter-arrival times, t, are represented by the
non-uniformly spaced vertical bars and the frequency
counts, x, are the numbers indicating the arrivals
occurring within the uniform intervals.

Figure 3: Random Arrivals
Figure 4 contains the Poisson process formulas where
the values of t are Negative- Exponentially distributed,
Equation 4.1, with a mean time between arrivals
of P and the x counts representing the number of
arrivals in constant length intervals, are Poisson
distributed, Equation 4.2, with a mean number of arrivals

per interval of
P
1 . For example, if the mean time

between arrivals is P = 1/2 sec/arrival then, the mean

number of arrivals per sec is
P
1 = 2 arrivals/sec.

Inter-arrival Times
t

Count per Interval
x 3 2 3 2 2 4

Neil Gunther

Figure 4: Poisson Process Formulas

Sampling estimates of mean,
_
x , variance, 2s , and std

dev, s , for these distributions are listed in Figure 5.

Figure 5: Sample Statistics
Note the mean of the Negative-Exponential distribution
equals its standard deviation and the mean of the
Poisson distribution equals its variance. For an intuitive
demonstration of the Poisson process using a one meter
ruler and two sets of numbered chips see [BRAD09].

The mean equal standard deviation property of the
Negative-Exponential opens the door to the possibility
that offered traffic quality can be determined by
comparing the mean and standard deviation of recorded
event request time differences when events are sorted in
launch time order. If these two statistics are
approximately equal the traffic pattern is realistic but if
they are not close to each other the traffic pattern is
unacceptable and adjustments need to be made to the
load environment.

For example, the web pages used to test an on-line
State Budget Web Site are listed in Figure 6. The
objectives of the test are to be certain the database is
properly tuned and insure sufficient web site resources
are in place when the Governor announces its
availability to citizens at his State of the State address.

Budget Web Site - Pages Load Tested
Web Page Name Purpose
Home Budget Home Page
by_department Department View
by_department_xx Department xx Details
by_function Functional View
by_function_yyy Function yyy Details
by_general_ledger General Ledger View
by_general_leger_zzzz General Ledger zzzz Details
by_revenue Revenue View

Figure 6: Budget Web Site Pages Load Tested
Figure 7 is a segment of a test run event output file
produced by the popular JMeter [JMETER12] load tool
with the data sorted by request time, “Time Stamp”. If
the mean and standard deviation of the test run “Time
Stamp” differences are computed and close to each
other in value it is reasonable to assume random arrivals
are being created and the traffic is high quality. If they
differ significantly then modifications to the load
generating environment are required.

Figure 7: Budget Web Site JMeter Test Run Events
As an illustration of these inter-arrival time calculations,
the “Time Stamp” difference between the first two events
listed in Figure 7 is 264 milliseconds (1231531501954 –
1231531501681 = 264). This calculation is repeated
between adjacent timestamps and each pair of
timestamps by web page name, e.g., by_department_xx.
The mean and standard deviation of the differences are
computed and compared for equality.

Unfortunately, arrival pattern statistics are not normally
reported by load generating tools so this author wrote a
Perl script to process the data. Figure 8 is the inter-
arrival time report produced by that script for the full

Figure 8: Budget Web Site Inter-arrival Statistics

� � andetf
t
P

P

�

1 (4.1)

� � ...,1,0
!

1
1

¸̧
¹

·
¨̈
©

§

�

xfore
x

xp

x

PP
 (4.2)

Where:

tarrivalsbetweentimemean , P .
� � iancervadevstdmeantffor P, .

.,,1 tervalintimeperxarrivalsofnumbermean
P

iancervameanxpfor
P
1),(.

n

x
x

n

i
i¦

 1
_

,
1

1

2_

2

�

¸
¹
·

¨
©
§ �

¦

n

xx
s

n

i
i

, 2ss .

Where:

.valuesampleitheisx th
i

.sizesampletheisn

Neil Gunther

Neil Gunther
Text

Neil Gunther
n = sample size

Figure 7 file and shows the mean and standard deviation
of the inter-arrival times (green) are close to each other
for all web page name events as well as the total set of
events. These statistics indicate independent requests
are being produced by the testing setup.

5.0 Improving Traffic Quality
If the inter-arrival time standard deviation significantly
differs from the mean the traffic generation environment
needs adjusting or the simulated load will not match the
live application. What steps can be taken to bring a load
testing setup in line with this statistical relationship when
out of compliance?

Four suggested adjustments are:

1. Choose a different load generator delay timer.
2. Alter the technique used to increase load.
3. Randomize event order where possible.
4. Change the number of load computers.

5.1 Choose a different load generator delay timer
The first potential adjustment suggested is to choose a
different load generator delay timer to help make
requests look more independent from one another.
Given the previous arguments, the obvious choice is the
Negative-Exponential distribution because it produces
the desired independent delay interval. After this timer
change make a test run and check the inter-arrival
statistics to determine if they possess the same equality
characteristics as Figure 8.

There is a potential problem with this suggestion,
however, because as Figure 9, the JMeter timer list
reveals, there is no Negative-Exponential distribution
option. This is a baffling outcome since delays
distributed in this manner occur over a wide range of
application environments. It should be noted that JMeter
is not the only product which excludes the Negative-
Exponential from its timer list and a cursory review of
popular load tools reveals exclusion is the rule, not the
exception.

Figure 9: JMeter Delay Timers
The omission of the Negative-Exponential timer cannot

be because it is a complex expression and difficult to
implement. The formula for drawing the time to delay is
Equation 5.1 in Figure 10 which simply says multiply
minus the mean think time by the natural log of a
random number between zero and one.

Figure 10: Negative-Exponentially Distributed
Think Times.
The Java line of code that represents Equation 5.1 and
the function call used to delay the time returned from
that call are contained in Figure 11.

Figure 11: Negative-Exponentially Distributed Think
Time Java Code.
A derivation of Equation 5.1 using the Negative-
Exponential probability density function, Equation 4.1, as
a starting point can be found in [BRAD04] or [BRAD06].

Fortunately, independent requests can be produced
anyway using the available random draw probability
distributions (Poisson, Gaussian and Uniform) as long
as there are a sufficient number of virtual user threads
running. This mechanism works because it can be
shown mathematically that the superposition of
independent arrival processes which come from any
distribution will approach a random arrival process as
their number increase [KARL75] and [ALBI82]. The
concept is analogous to the Normal (Gaussian)
distribution’s limiting properties when summing random
variables. The Figure 9 Uniform Random Timer was
implemented for all the examples in this paper.

5.2 Alter the Technique Used To Increase Load
If the Negative-Exponential distribution timer option is
not available then superposition dictates that a large
virtual user count is needed to produce an independent
request environment. One way to be reasonably sure
this requirement will be met is to fix the number of user
threads at the maximum number needed for all tests
within the constraints of the load generating computer’s
resources. Traffic is increased from test to test by

t = (long)(-(double)mu*Math.log(Math.random()));
Thread.sleep(t);

Where:
t = think time until next web page request.
mu = mean think time.

� �00 rnlt P� (5.1)

Where:

.0 requestpagewebnextuntiltimethinkt
.timethinkmean P

).1(lnlogln enatural
.10 00 dd rnumberrandomr

Neil Gunther

Neil Gunther

Neil Gunther

lowering the think time parameter(s) while maintaining a
consistent transaction mix. The fundamental concept
behind this fixed virtual user technique is to make these
threads a set of independent transaction generators.

Some advantages to this fixed virtual user approach are:

1. Provides a consistent ramp-up environment by
making the thread startup count constant from
one scalability test level to the next.

2. Creates a stable process/thread set for the load
computers’, memory, processors, and O/S
scheduler across test runs.

3. Incorporates a higher think time proportion of
total transaction loop time (TT+RT) reducing the
impact of the response time distribution on the
arrival pattern.

4. Removes the need for one virtual user per load
test active user. In [BRAD11] 325 virtual users
are invoked to simulate the traffic produced by
1000 active users.

Traffic quality may improve using this fixed virtual user
technique but how can active users supported be
determined since there is no longer a one to one
relationship between active and virtual users?

Under these fixed user thread conditions, the number of
active users supported at a specific transaction rate is
computed by multiplying the transaction rate by the
mean thread cycle time (TT+RT). This technique is used
to create the Figure 12 active users supported matrix for
the range of composite mean think times and load test
transaction rates shown. The Trans/Sec levels for the six
test runs are produced with the same set of 325 user
threads by adjusting think time settings and maintaining
a transaction mix exemplified by the Test Run 6 inter-
arrival data detailed in Figure 8.

Figure 12: Budget Web Site Active Users Supported
As an example of how the Figure 12 active user values
are computed, the 1000 active user level defined by the
intersection of the Test Run 6 row and the 10 second
think time column is calculated as follows; 67.64 x (10 +
4.78) = 1000. That is to say, 1000 users, each with a
14.78 second average transaction cycle time, collectively
offer 67.64 Trans/Sec to the target environment.

Because think times vary and are educated guesses at
best, a table like Figure 12 can be a useful indicator of
how sensitive active user support levels are to think time
estimates.

5.3 Randomize Event Order Where Possible
If there are still issues with traffic pattern another step is
to randomize the order of user events as much as
possible. This technique can help in situations where all
virtual user threads follow a fixed sequence and specific
events have inherently long response times causing
threads to bunch up behind these long latency events.
This stacking up can cause a systematic pattern of
arrivals to occur which does not happen in the real world
where each user has his own operating system task
queue and makes requests independently.

Figure 13 is the JMeter layout of the Budget Web Site
load test script and shows all web pages being selected
randomly. Biases in web page selection are created by
replicating the page request event as is the case for the
Home page which is repeated four times.

Figure 13: Budget Web Site JMeter Script
Of course the web application’s logic may force a
particular page sequence like logon and logoff. For this
forced order situation consider logging on each user
thread once per test, accessing the remaining web
pages in random order where possible until the run
completes, and never logging off. After all, real users
seldom logoff so why should the load tool? This strategy
puts logon near the beginning of the test at a fixed count
and is consistent with workers logging on to start the
day.

5.4 Change the Number of Load Computers
Establishing the right combination of delay timer and
virtual user thread count along with randomizing the
order of events may produce a more realistic random
arrivals traffic pattern but what if the CPU and Memory
capacity of a single traffic generating platform is
insufficient to yield the needed load? As Figure 14
illustrates, the memoryless property of the Negative-
Exponential distribution makes load expansion beyond a
single computer seamless.

P
1

 � �0
11 11 ttt

ee
���

PP

PP

Figure 14: Negative-Exponential “Memoryless”
Property
This figure shows the Negative-Exponential density

t
e P

P

11 �
and its value

P
1 at time 0 on the left side.

After 0t has elapsed, the density function for the time
until the next arrival is computed by magnifying the
portion of this curve to the right of 0t (shaded) and

increasing its area to unity yielding
� �0

11 tt
e

��
P

P
. The

shape of this new density function is identical to the
original and is only shifted in time. Since the shape of
the distribution remains the same everywhere on the
time line it is called time invariant, or memoryless.

As Kleinrock [KLEI75] indicates, “No other density
function has the property that its tail everywhere
possesses the exact same shape as the entire density
function.” Gunther [Gun05] describes the memoryless
property of the Negative-Exponential with a numerical
illustration and a counter example using the Normal
probability distribution.

Since the events within a random arrivals stream are
memoryless, it can be shown mathematically that the
merger of multiple memoryless streams is also
memoryless and can be viewed as a single independent
stream with intensity equal to the sum of the individual
stream intensities [GIFF78].

This random arrivals stream merging property is
illustrated in Figure 15 for the number of arrivals per
interval Poisson distribution where each ia is a Poisson

distributed random variable whose sum, A , the total
arrivals per unit time, is also Poisson distributed with
mean equal to the sum of the ia means.

Therefore, increasing the number of load generating
computers can be done seamlessly without altering the
flow properties of the traffic produced and traffic quality
can be checked by comparing inter-arrival time mean

and standard deviation across individual load generator
event files. When load generator clocks are
synchronized using say, NTP, the separate event files
can be merged and the aggregate inter-arrival pair of
statistics computed and compared for equality.

Figure 15: Combining Poisson Distributed Streams
Figure 8 illustrates the independent stream merging
concept at the single test and load computer level since
each web page name, the quadrupled home page, and
the total events list possess inter-arrival time mean and
standard deviation equality. No matter how the traffic is
sliced, random arrivals is preserved within a single load
generator as well as across multiple generators.

The memoryless property of the Negative-Exponential is
exploited in many computing system component designs
such as Ethernet where it is applied within the retry
timing mechanism to make collision events appear to be
first offered attempts when reinitiated.

6.0 The Virtual User’s Role in Scalability Testing
When increasing load in the traditional way by adding
virtual users there is a perception these user threads are
traffic but in reality they are traffic sources. This is an
important distinction when addressing the issue of
resource scalability. Perhaps the best way to sort out
resource scalability factors is return to the active users
supported matrix in Figure 12 and the CPU % Use
column in the same figure.

For illustrative purposes, turn the situation around and
assume the 10 second think time column for active
users supported represents a series of virtual user
quantities implemented in a scalability test which yields
the Trans/Sec, RT (Sec), and CPU % Use values listed.
For example, assume Test Run 6 was performed with
1000 virtual users, a composite think time of 10 second
yielding 67.64 Trans/Sec and a thread cycle time
(TT+RT) of 14.78 seconds.

Since Figure 12 contains CPU % Use information, an X-
Y plot of that statistic as a function of the appropriate
independent variable can determine processor
scalability. A plot of CPU % Use Vs the virtual users in
the 10 second column is performed and shown in Figure

 � �niddistributePoissonisai dd1

 1a

 2a

 na

naaaA ��� ...21

 ddistributePoissonisA

 0t t 0

16. This chart has a trend line that deviates significantly
from the actual line. The actual line nearly flattens out
and is almost horizontal at the highest active user level
plotted, implying that fewer CPU resources are required
to process the incremental load from 800 to 1000 users
than from 400 to 600 users. This “supports the same
incremental number of users with far fewer resources”
result is counter intuitive and is so because traffic
sources do not logically scale with CPU resources.

Figure 16: CPU % Use Vs Virtual Users
In contrast, Figure 17 is an X-Y plot of CPU % Use as a
function of transaction rate using the data contained in
the Trans/Sec column of Figure 12. Since the trend line
in Figure 17 is nearly coincident with the actual line
connecting the six data points it is reasonable to assume
CPU resources do scale with transaction rate to at least
70% Use.

Figure 17: CPU % Use Vs Trans/Sec

Why the difference between the two plots? The short
answer is that active or virtual users are not traffic but
generate the traffic for target servers to process.
Looking more closely, virtual user event cycle time
includes response time in addition to think time. As
Figure 18, a plot of Figure 12 response times as a
function of Trans/Sec illustrates, these times are typically
a non-linear function of load at higher traffic levels.

Figure 18: Response Time Vs Trans/Sec
Therefore, response time is a much greater proportion of
user thread cycle time at higher traffic rates making each

thread less effective as a producer of transactions.

This virtual user productivity argument is more clearly
understood within the context of the traditional traffic
ramp up technique that is illustrated in Figure 19. This
figure depicts virtual user thread productivity when their
count is increased incrementally for the10 second mean
think time and the response times in Figure 18. As
shown, the 4.78 second response time in Test Run 6
versus the Test Run 1 value of .32 seconds increases
the average thread cycle time from 10.32 seconds to
14.78 seconds, a 43% loss in efficiency. Without the
impact of response time on cycle time Test Run 6 would
offer 60 Trans/Sec to the target test environment but it
only delivers 40.6 Trans/Sec.

Figure 19: Virtual User Productivity

This illustrates that treating the virtual users as if they
are target system traffic can be misleading and show
highly scalable resources to not be scalable at all. This
misleading result occurs even when the traffic produced
is high quality because traffic Vs traffic sources is the
issue, not traffic pattern.

7.0 Example Load Test
The following example load test is intended to illustrate
application of the techniques just described to produce
real world results and demonstrate correct scalability
analysis techniques. The example chosen is a web site
where citizens obtain state government statistics that is
being reconfigured from standalone servers to a
virtualized load sharing environment. The names of the
web pages being tested are listed in Figure 20.

GOV Web Site - Pages Load Tested
Web Page Name Purpose
010_Home Home Page
012_Home_jpg Background Image
020_Department Department Information
022_Department_jpg Department Image
030_Demographics Demographic Information
040_Statistics Summary Statistics

Figure 20: GOV Web Site Pages Load Tested
Figure 21 is a topological view of the load testing

environment showing load generator, network interfaces,
F5 Load Balancer, and the virtualized Blade Server
setup with GOV virtual servers “1” and “2”.

Traffic_200 Traffic_1

Enet

Traffic Generator

GOV1

Network

Blade Server Virtual Environment

GOV2

Network

F5 Load Balancer

Figure 21: GOV Test Traffic Generation Topology

The major test objectives are to determine the scalability
of the two virtual servers and evaluate how well the F5
balances the load between them. Tests are performed
on a single traffic generator running the JMeter script in
Figure 22.

Figure 22: GOV Web Site JMeter Script

The layout of this script may seem a bit strange at first
but it is structured to maximize the quality of the traffic
produced by applying the ideas presented in this
document. The overall test implementation is as follows:

1. Web pages are accessed in random order with
multiple instances of them implemented to bias
the event count. For instance, there are four
010_Home page instances Vs one
040_Statistics page instance.

2. As the Traffic_200 bubble in Figure 21 implies,
two hundred JMeter threads (virtual users) are
used for all tests. Traffic is increased from test
to test by reducing the mean think time of the
one uniform random timer in Figure 22.

3. The load generator, the F5, and the GOV virtual
servers are housed in the same building with a
100 megabit link connecting the load generator
to the higher bandwidth building network.

4. All web page requests go through DNS and are
directed to the F5 Load Balancer which
distributes the work to the two virtual servers.

5. Seven 25 minute tests are executed which can
be identified by the test start time, e.g., the 1800
test starts at 6:00 PM and ends at 6:25 PM.

6. Assertions are implemented to be sure correct
responses are returned. Response assertions
are used for html pages and size assertions are
implemented for the jpg files.

Because transaction mix consistency is a key ingredient
in scalability testing, this JMeter test script is structured
to deliver mix consistency across all seven tests
performed.

It is customary to produce test output as a set of time
series charts with resource activity level plotted as a
function of wall clock time like shown in Figure 23 but
this method of summarizing results doesn’t generally
distill the information in a way management can absorb
efficiently. The decision maker is shown chart after chart
in time series format and eventually provided the bottom
line result in a few words with no intuitively appealing
plots directly reflecting the conclusions drawn.

Figure 23: GOV Web Site CPU % Use Vs Time
All of the graphs summarizing the GOV load test results
which follow use a different approach removing time as
the independent variable and replacing it with Trans/Sec.
The graphs produced are X-Y plots using a statistic like
mean response time as the dependent variable with
each data point graphed reflecting a test run value, e.g.,
the 2100 test. A discussion of time series data
aggregation into statistical information for decision
making is found in [BRAD10].

With this reporting structure as background, the results
that follow are categorized into three main topics and
some concluding comments.

1. Active Users Supported
2. Target System Scalability
3. Traffic Quality Determination

Each topical section contains a set of X-Y plots and a
supporting table possessing the graphed statistics.

7.1 Active Users Supported
Figure 24 is a summary of the test results from a load
generator or aggregate user perspective. The top graph
contains mean and 95% response time statistics as a
function of Trans/Sec, the graph below it is a similar plot
for Enet % bandwidth used, and the table at the bottom
provides the data used to produce the two graphs on the
left and an Active Users Supported matrix on the right.

The Active User Supported matrix is developed by
applying the same technique used in Figure 12. For
example, Test Run 2100 yields 154.56 Trans/Sec with a
mean response time of .249 seconds. If the mean think
time is 30 seconds 4675 active users are supported,
154.56 x (.249 + 30) = 4675 active users.

Figure 24: GOV Test Results Aggregate User View

An average think time of 30 seconds may seem like a
long interval for a read only web site but it is a typical
user experience within the context of this application
environment. Since, however, there is nearly always
uncertainty surrounding the actual think times produced
by the set of Active Users, the five columnar user levels
are listed. These quantities help make this uncertainty
explicit and permit results reviewers to perform
sensitivity analysis.

7.2 Target System Scalability
Figure 25 is a set of three target system resource usage
X-Y plots and associated table values including CPU %
Use, Pkt Rec KB/Sec, and Pkt Sent KB/Sec graphed as

a function of Trans/Sec. Other resource statistics such
as real memory pages/sec and disk I/O rates were
recorded but are not shown since usage was negligible.

A cursory view of the three graphs in Figure 25 shows
the F5 is balancing the workload very well across GOV1
and GOV2 since there is little separation between the
GOV1 and GOV2 lines for all seven tests by resource
charted.

Figure 25: GOV Test Results Target Server View

A comparison of the Enet Rec KB/Sec statistics in
Figure 24 Vs the last column in Figure 25, Enet Sent
KB/Sec for GOV1+GOV2 yields a good data validation
cross-check. As shown, these two statistics are
reasonably close to each other at all transaction test run
levels indicating the traffic leaving the target system is
approximately the same as that received by the traffic
generator. As an example, Run 2100 yields, TG = 9280
Rec KB/Sec and GOV1+GOV2 = 9613 Sent KB/Sec.

From a target system scalability perspective it is clear
the key limiting resource, CPU, is very scalable through
the 71%+ CPU % Use in Run 2100.

7.3 Traffic Quality Determination
Traffic quality is not typically part of the results analysis
process but, as mentioned in Section 1.0, poor quality

test traffic is revealed by the live application when it is
too late to make improvements and credibility is lost.
Figure 26 contains an X-Y plot and data table of inter-
arrival time mean and sdev statistics as a function of
Trans/Sec for all events recorded on a test run basis.
Figure 27 contains the same information as Figure 26
but only includes the 010_Home page events. Figure 28
is similar to Figure 27 but is based on one instance of
the 040_Statistics page Vs the four instances of the
010_Home page.

Figure 26: GOV Inter-arrival Stats – All Pages

Figure 27: GOV Inter-arrival Stats - 010_Home

Figure 28: GOV Inter-arrival Stats - 040_Statistics

All three graphs show a mean and sdev curve very close
to each other in value indicating the desired random
arrivals traffic pattern is produced. Whether traffic is
aggregated by web page for a specific test run as in
Figure 8, by a specific web page across test runs like
Figure 27 and Figure 28, or all pages across test runs as
in Figure 26, the mean and sdev inter-arrival time
statistical equality is preserved.

As discussed in Section 5.4, this relationship between
the two statistics holds even across multiple traffic
generators and the data from all of them can be
merged for analysis purposes if their clocks are in
sync.

7.4 GOV Test Conclusions
These test results demonstrate high quality traffic is
produced by the load generating environment. They
further indicate the GOV virtual environment is balanced
and tuned and capable of supporting a little less than
5,000 active users with a mean think time between web
page requests of 30 seconds.

It should be noted this simple example is chosen for
conceptual clarity purposes but the ideas illustrated
apply equally well in more complex large user population
circumstances as long as there is no coercion between
users when hitting the enter key.

8.0 Summary
When load testing large user population web
applications the devil truly is in the virtual user details.
This discussion shows that simply attempting to mimic
the real world by creating a virtual user per active user,
while ignoring fundamental traffic principles, gives the
analyst a false sense of security that the load test being
performed yields valid results. As Figure 1 in Section 3
illustrates, a load generating computer is one traffic
source attempting to operate like the large number of
independent sources in Figure 2. The discussion in
Section 4 provides a way to make a determination of
how close the load testing setup is to accomplishing that
mission.

Section 5 contains traffic quality improvement
suggestions and Section 6 describes post testing
scalability analysis methods that are useful as well as
those that are misleading. Section 7 puts it all together
with an example load test that shows how to compute
active users supported from traffic data, determine the
scalability of target system resources by applying
appropriate statistical inference techniques, and
demonstrate the robustness of the traffic generated by
aggregating the inter-arrival data into various web page
event levels.

Virtual Users are an important part of any load test and
maximizing traffic quality should be a primary goal of
their implementation. Otherwise, the live application will

reveal their shortcomings and the test will be viewed by
management as a waste of time and money.

References
[ALBI82] S.L. Albin, “On Poisson Approximations For
Superposition Arrival Processes In Queues”,
Management Sciences, Vol. 28, No2, February 1982.

[BRAD04] J. Brady, “Traffic Generation Concepts –
Random Arrivals,” www.perfdynamics.com, Classes,
Supplements, 2004.

[BRAD06] J. F. Brady, “Traffic Generation and
Unix/Linux System Traffic Capacity Analysis,” CMG
Journal, 117:12-20 (Spring 2006).

[BRAD09] J. F. Brady, “The Rosetta Stone of Traffic
Concepts and Its Load Testing Implications,” CMG
MeasureIT, (September 2009).

[BRAD10] J. F. Brady, “Making Statistical Sense out of
Time Series Data with ‘Home Grown’ Perl Scripts,” CMG
MeasureIT, (August 2010).

[BRAD11] J. F. Brady, “Putting the Virtual Users You
Use for Load Testing In Their Place,” CMG MeasureIT,
(November 2011).

[GIFF78] W.C. Giffin, Queueing: Basic Theory and
Applications, Grid, Inc, Columbus, Ohio, 1978.

[GUN05] N. Gunther, Analyzing Computer System
Performance with Perl::PDQ, Springer-Verlag, Berlin
Heidelberg, 2005.

[JMETER12] The Apache Software Foundation, “Apache
JMeter”, (2012), http://jmeter.apache.org/index.html

[KARL75] S. Karlin, H.M. Taylor, “A First Course In
Stochastic Processes”, Academic Press Inc., New York,
N.Y., (1975).

[KLEI75] L. Kleinrock, “Queueing Systems Volume 1 and
2”, John Wiley & Sons, New York, N.Y., (1975).

[WIKI10] Wikipedia, “Poisson process”, (2010)
http://en.wikipedia.org/wiki/Poisson_process.

[WIKI12] Wikipedia, “ERLANG”, (2012)
http://en.wikipedia.org/wiki/Erlang_(unit)

Copyrights and Trademarks
All brands and products referenced in this document are
acknowledged to be the trademarks or registered
trademarks of their respective holders.

http://www.perfdynamics.com/
http://jmeter.apache.org/index.html
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Erlang_(unit)

