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The virtualization environment presents the opportunity to better manage and 
more efficiently utilize computing resources. The resource sharing aspects of 
virtualization does, however, create some new challenges from an application 
implementation and system support perspective. This paper addresses one 
of those challenges; how does one monitor and manage the behavior of the 
virtual environment when contention for its physical resources causes 
significantly long delays in processing to occur? A specific example, with 
data, is provided where one CPU is shared among three Linux Guests and 
processing demand among these guests result in significantly long virtual 
CPU wait times. 

 
 
 
1. Introduction 
The virtualization environment provides the opportunity 
to better manage and more efficiently utilize computing 
resources. These efficiencies, however, create some 
new challenges for system support and application 
implementation personnel. This paper addresses one 
of these challenges; how does one monitor and 
manage the behavior of the virtual environment when 
contention for its physical resources causes 
significantly long delays in processing to occur? 
 
This paper addresses the question by first describing 
the virtual environment and its key components. The 
discussion then focuses on analyzing some CPU wait 
times measured on a live system that are put into 
perspective through a series of questions and answers 
about virtualization and the potential causes of the long 
CPU wait times experienced. The paper ends with 
some concluding remarks and a set of 
recommendations for practitioners implementing 
applications in the virtual environment or supporting 
virtual platforms. 
 
2. Virtual Environment 
A virtual computing system consists of multiple virtual, 
“guest”, operating systems sharing a set of physical 
resources that are controlled by a master operating 
system, sometimes called the “hypervisor”. The basic 
idea is to more efficiently use and better manage 
computing resources by consolidating workloads from 
several physically separate systems into a single 
hardware environment. 

This approach to increased computing resource 
efficiency has a lot of merit but is not issue free. It is 
similar to a medication focused on patient wellness 
which has side effects. The characteristics of these 
side effects and the magnitude of their impact varies 
from patient to patient, or in this case, from guest 
operating system to guest operating system and 
application workload to application workload. One such 
side effect, and the focus of this paper, is the possibility 
that at high resource utilization levels individual guests 
are put in a prolonged “wait state” queueing for 
physical resources. An example of such a wait state 
situation is illustrated in the tables, graphs and reports 
contained in the next section.  
 
3. Wait State Example 
The example under consideration consists of a single 
CPU IBM Z900 environment where VM is the 
hypervisor for several Linux Guests. The only 
significant workload occurring among these guests 
happens on Monday evenings at 5:00 PM when a 
scheduled, i.e., cron, job is started on three of them 
that creates a tar archive of each guest’s file system 
and compresses it using the gzip program.  
 
The VM environment in question is set to IBM 
RedBook™ specification and the NTP (National Time 
Protocol) daemon is running on each of the SUSE 
Linux Guests. 
 
 



Table 1: Linux Guest Wait State Event Log 
Description Time Stamp 

Warning: Sleep Time is 73 sec but should be 60 sec Mon Jan 10 17:02:54 2005 
Warning: Sleep Time is 71 sec but should be 60 sec Mon Jan 10 19:20:06 2005 
Warning: Sleep Time is 100 sec but should be 60 sec Mon Jan 17 17:02:28 2005 
Warning: Sleep Time is 78 sec but should be 60 sec Mon Jan 17 19:24:48 2005 
Warning: Sleep Time is 98 sec but should be 60 sec Mon Jan 24 17:03:08 2005 
Warning: Sleep Time is 115 sec but should be 60 sec Mon Jan 24 19:19:05 2005 

 
Table 1 above summarizes the wait state events 
observed during three weeks in January 2005 on one 
of the three guests. 
 
These wait state events are captured by a Perl 
language script running on the guest (written by the 
author) that operates as follows.  
 
The script saves an initial time stamp and calls the 
Linux sleep function with the sleep parameter set to 60 
seconds. When the sleep time expires the script 
awakens and saves an ending time stamp. The 
difference between the two time stamps is computed 
and compared with the sleep interval requested. If the 
difference is greater than the tolerance value of 3 
seconds a log record containing the information shown 
in Table 1 above is created. The sequence is looped 
through continuously. The concept behind this script is 
to check if the hypervisor honors the 60 second sleep 
call wakeup request within 3 seconds. 
  
The script ran 24/7 during the three week period 
sampled and logged the six wait state events shown 
above. Linux Guest resource consumption statistics 
were also produced 24/7 during this three week period 
using data collection and analysis tools developed by 
the author. These tools invoke and process data 
gathered by standard Linux metering tools, i.e., vmstat 
and ps, the Sysstat library [SYS], i.e., iostat and sar, 
and Linux “/proc” system partition counters. 
 
Below are bar charts produced by these analysis tools 
showing Linux Guest resource consumption for CPU, 
i.e., Figure 1, Disk I/O, i.e., Figure 2, and Network 
Packets, i.e., Figure 3, on Monday January 24, 2005 at 
hourly intervals between 1:00 PM and midnight. As 
Figure 1 depicts, CPU usage is nearly 100% for the 
1700 hour and 1800 hour (5:00 PM through 7:00 PM) 
time periods while Disk I/O rates and Network Packet 

rates, Figure 2 and Figure 3, are significant but not 
excessively high. 
 
Additionally, there is a bar chart and associated table 
identifying CPU consumption by process, i.e., Figure 4 
and Figure 5. The running process list in Figure 4, 
labeled by name and ID number, indicates the two gzip 
processes account for nearly 100% of the CPU time 
consumed between 1600 hours and 2100 hours. 
Figure 5 contains the number of CPU seconds used by 
each process during the hours listed and identifies the 
tar and gzip CPU seconds for 1700 hours, 3245 
seconds, to be 90% of that hour. Both Figure 4 and 
Figure 5 clearly show the gzip processes as the 
dominant contributor to CPU busy. 
 
Finally, a partial listing of two hourly SAR (System 
Activity Report) reports, i.e., Figure 6.1, is shown that 
highlights two gaps in the 58 second sampling interval 
chosen. These gaps are identified with a “<---- Wait 
State” label. The first wait state event ends at 05:03:08 
PM which is 9 seconds later than the 58 second 
sampling interval requested, i.e., 05:02:59 PM. 
Likewise, the second wait state event finished 35 
seconds after its 58 second time interval i.e., 07:19:05 
PM instead of 07:18:30 PM. It is interesting to note that 
these two SAR report time stamps, 05:03:08 PM and 
07:19:05 PM, have the same value as the two January 
24, 2005 Wait State Event Log time stamps listed in 
Table 1 and repeated in Figure 6.2. This time stamp 
equality between two independently running processes 
is clear evidence that wait state events occurred and 
their occurrence is correlated with contention for CPU 
resources. 
 
The resource consumption patterns for Monday 
January 10, 2005 and Monday January 17, 2005 are 
not displayed in this document but have similar 
characteristics to those shown for January 24, 2005.



Figure 1: CPU Busy 

 
 

Figure 2: Disk I/Os per Second 

 
 

Figure 3: Network Packets per Second 

 
 

Figure 4: CPU Process Percentages 

Figure 5: CPU Seconds Used By Each Process Hourly 
Process Status Summary Statistics - Z900_Linux01 System Monday 01/24/2005 
                     --1600--- --1700--- --1800--- --1900--- --2000--- ----Sum----- 
      name     pid     sec   %   sec   %   sec   %   sec   %   sec   %   sec      % 
 ----------- ------- ----- --- ----- --- ----- --- ----- --- ----- --- ----- ------ 
         tar   20514     0   0    34   1     0   0     0   0     0   0    34   0.64 
  ***   gzip   20515     0   0  3207  99     0   0     0   0     0   0  3207  60.27 
         tar   20717     0   0     0   0    30   1     0   0     0   0    30   0.56 
  ***   gzip   20718     0   0     0   0  2009  98     0   0     0   0  2009  37.76 
        perl   20819     0   0     0   0     0   0     2  15     0   0     2   0.04 
      vmstat   20832     0   0     0   0     0   0     1   8     0   0     1   0.02 
          sh   20970     0   0     0   0     0   0     1   8     0   0     1   0.02 
        sshd   21059     0   0     0   0     0   0     0   0     2  29     2   0.04 
   kjournald      42     0   0     1   0     1   0     2  15     3  43    13   0.24 
        cron     462     0   0     0   0     0   0     1   8     0   0     1   0.02 
        nscd     473     0   0     0   0     1   0     0   0     0   0     1   0.02 
        qmgr     490     0   0     0   0     0   0     1   8     1  14     2   0.04 
        perl    5757     0   0     0   0     0   0     0   0     1  14     2   0.04 
      kswapd       6     0   0     3   0     7   0     5  38     0   0    15   0.28 
   kjournald      88     0   0     1   0     0   0     0   0     0   0     1   0.02 
               total     0   0  3246 100  2048  99    13 100     7 100  5321 100.00 
 
*** Indicates high CPU usage  



 
Figure 6.1: System Activity Report (SAR) 

Linux 2.4.21-83-default (Z900_Linux01) 01/24/2005
 
05:00:05 PM       CPU     %user     %nice   %system     %idle 
05:01:03 PM       all      0.62      0.00     63.98     35.40 
05:02:01 PM       all      0.33      0.00     39.10     60.57 
05:03:08 PM       all      0.12      0.00     92.88      7.00 <---- Wait State 
05:04:06 PM       all     94.81      0.00      2.90      2.29 
05:05:04 PM       all     61.19      0.00     21.43     17.38 
05:06:02 PM       all     95.02      0.00      4.40      0.59 
05:07:00 PM       all     69.02      0.00     15.83     15.16 
05:07:58 PM       all     87.28      0.00      7.58      5.14 
05:08:56 PM       all     83.71      0.00      9.69      6.60 
05:09:54 PM       all     91.33      0.00      4.59      4.09 
05:10:52 PM       all     74.84      0.00     11.00     14.16 
05:11:50 PM       all     88.09      0.00      5.52      6.40 
05:12:48 PM       all     96.71      0.00      1.71      1.59 
05:13:46 PM       all     86.14      0.00     12.31      1.55 
05:14:44 PM       all     93.40      0.00      5.78      0.83 
    :              :        :         :         :         : 
07:13:40 PM       all     93.24      0.00      3.41      3.34 
07:14:38 PM       all     94.66      0.00      2.95      2.40 
07:15:36 PM       all     95.29      0.00      2.86      1.84 
07:16:34 PM       all     93.97      0.00      2.74      3.29 
07:17:32 PM       all     73.43      0.00     22.33      4.24 
07:19:05 PM       all      2.31      0.00     97.39      0.30 <---- Wait State 
07:20:03 PM       all      2.07      0.00      8.98     88.95 
07:21:01 PM       all      0.21      0.00      0.36     99.43  

 
Figure 6.2: Wait State Event Log 

Warning: Sleep Time is 98 sec but should be 60 sec - Mon Jan 24 17:03:08 2005 
Warning: Sleep Time is 115 sec but should be 60 sec - Mon Jan 24 19:19:05 2005  

 
Note: The SAR report is in 12 hour time and the Wait State Event Log is in 24 hour time. 

 
4. Perspective 
What insights can be gained from this virtual 
environment wait state example? First, the situation 
can likely be mitigated by changing the schedule of the 
cron job and staggering the backup start times. This 
action was taken and the wait state events no longer 
occur.  
 
This procedure fixes the immediate problem but 
looking beyond the basic “fix it” perspective and taking 
a more conceptual approach to the situation can be 
instructive. Such an approach gives rise to the 
questions contained in the next section regarding the 
virtual environment and how it differs from the 
standalone Linux system situation.  
 
5. Virtualization Questions 
When one reads the literature, some of which is listed 
in the references, they discover that virtualization is 
much more complicated to accomplish that it appears 
to be on the surface. The following set of questions 
address virtualization issues such as time references, 
hypervisor visibility into the guest workloads, and traffic 
congestion behavior. 
 
Would the “Wait State Event Log” entries have 
occurred in the standalone Linux environment? 
The answer, with near certainty, is no. The reason for 

this assertion is a Linux system in standalone mode 
possesses a time share scheduler that runs every 10 
milliseconds and dynamically assigns process priorities 
on a resource consumption basis. The scheduler is 
likely to give a relatively higher priority to the Wait 
State Event Log script and a lower priority to the gzip 
processes because the script only wants to run every 
60 seconds for a very sort period of time and the gzip 
processes ask to run continuously for up to an hour.  
 
How much visibility does the hypervisor have into 
the characteristics of each Linux Guest’s 
workload? Given the Wait State Event Log results 
shown in the example above, the answer appears to 
be, not enough visibility. This is a situation where three 
Linux Guests that have identical workloads want the 
single physical CPU continuously for a long period of 
time. The hypervisor operates at the Linux Guest level 
not the process level within each Linux Guest, making 
CPU execution priority assignments difficult. 
 
What effect does the hypervisor’s apparent lack of 
workload visibility or potential lack of physical 
resources have on the applications running under 
the virtual umbrella? This is a complex “it depends” 
answer. The gzip process, which is essentially a 
“batch” oriented task, is affected very little by a wait 
state event and simply takes a little bit more time to 
complete its work. Transaction oriented processes or 



processes which rely on “I’m alive” interaction, such as 
data replication functionality, can potentially fail, at 
least temporarily, as the result of a wait state event. At 
a minimum, transaction processing response times 
may become erratic and one or both sides of a data 
replication application could be put in standalone 
mode. 
 
Also, as illustrated in the Figure 6.1 SAR report, 
metering packages in the Linux Guest can be rendered 
unreliable when running under the hypervisor. The 
SAR data produced for the two wait state entries in 
Figure 6.1 show more than 90% kernel (%system) 
utilization, which is suspicious when compared to 
values in the other sample entries. See [VEL05] at the 
end of this document for further discussion of this 
metering package issue. 
 
What exactly caused the “Wait States” in the above 
example to occur? The cause appears to be 
contention for CPU resources but it is possible there is 
some issue with the Disk I/O, Network Packet, or 
Memory interfaces. The important thing is to recognize 
this as a virtualization issue and not a bug in either an 
application or a third party software product such as a 
DBMS (Data Base Management System). A tool like 
the Wait State Event Log Perl script can be a great aid 
in isolating virtualization oriented anomalies from those 
attributable to applications or third party software 
packages. 
 
How does traffic congestion oriented resource 
degradation compare between the virtualization 
and Linux standalone environments? The answer to 
this question assumes that in both environments 
applications are well designed, i.e., contain no 
deadlock states and have properly sized system 
resources, e.g., message queues. In the standalone 
Linux case, increases in traffic volume cause system 
response time to grow systematically, i.e., the system 
slows down as traffic goes up. In the virtualization 
environment, however, high resource utilization can 
lead to long wait states that may cause timeouts to 
occur making application failure possible. 
 
What other virtualization “side effects” exist but 
are not illustrated in the example being discussed? 
The example discussed in this paper is about as basic 
as it gets. There are three plain SUSE Linux Guests 
running tar/gzip processes for backup purposes at the 
same time.  
 
One Linux modification very prominent in the literature, 
[IBM], that has the potential to emit some side effects 
is to change the Linux 10 millisecond interrupt 
interval, sometimes called the 100 Hertz “jiffy” 
timer to a lower frequency or make it on-demand 
oriented. The jiffy timer controls the Linux operating 
system interrupt interval which is the interval between 

scheduler invocations when priorities are dynamically 
assigned and processes put on the ready to run list. 
The reason this change is desirable from a 
virtualization perspective is the hypervisor needs to 
handle the interrupts even when the Linux Guest has 
no work to accomplish. If the Linux Guest operating 
system is modified to generate interrupts less 
frequently, or better yet, on demand, the hypervisor 
can manage its physical resources more efficiently. 
 
Making this interval variable will reduce hypervisor 
overhead at low traffic levels but if there is a lot of 
traffic demand among multiple Linux Guests, it will 
likely not help much. There is also the possibility that 
such timing manipulations will create destabilizing 
timing complexities between Linux and its virtual 
peripheral devices, e.g., communications interfaces. 
 
Another issue being mentioned in the literature is 
memory synchronization associated with 
virtualized SMP (Symmetric Multiprocessing) 
environments. Memory synchronization in SMP 
environments is generally accomplished using locks 
such as mutex (Mutually Exclusive Context Switch 
Locking) or futex (Fast User Space Locking). SMP 
inefficiencies occur in the virtual environment if one 
virtual processor of a multiprocessor domain is 
preempted when holding a lock, while other virtual 
processors of the same domain continue to run on 
other processors, waiting for the lock to be released.  
For a discussion of this issue see [XENc]. 
 
6. Conclusions 
The virtualization environment creates an opportunity 
to better manage and more efficiently utilize computing 
resources. The efficiencies gained, however, are offset 
to some degree by the challenges and issues just 
discussed.  
 
Fundamentally, virtualization takes each guest 
operating system out of the native environment for 
which it has been tuned and places it under a 
controlling umbrella. Linux, for example, is a very 
transaction oriented operating system which 
implements a time share scheduler that performs 
dynamic process priority assignment based on 
resource consumption characteristics at 10 
milliseconds intervals. Any significant alterations to this 
operating environment imposed by the hypervisor 
could negatively impact Linux performance during high 
traffic periods. 
 
The major virtualization concern, from a business 
perspective, is that workloads are aggregated for 
several underutilized standalone servers into a single 
virtual environment which, over time, becomes traffic 
congested and exhibits poor performance degradation 
characteristics. These performance degradation 
characteristics can range from erratic response time to 



application instability and are much less desirable than 
the gradual system slow down generally experienced 
under Linux standalone conditions. 
 
A major difficulty with discussing virtualization issues is 
that a large number of them surface when, as 
illustrated in this paper, resources are being heavily 
utilized and virtualization is operating at its highest 
efficiency. Comments from current virtualization 
customers not experiencing these issues should be put 
into perspective because those customers may be 
operating at minimum traffic volumes, with 
straightforward applications, and very low virtual/ 
physical resource ratios. 
 
7. Recommendations 
In light of the wait state example provided, the 
virtualization issues presented, and conclusions drawn, 
the following virtualization implementation 
recommendations are offered for consideration. 
 
1. Implement a wait state event logging monitor on 

each guest, like the Perl script described in this 
paper, to help isolate virtualization issues from 
hardware, third party software, or application 
faults. The best monitor sleep parameter and 
tolerance level to use depends on the time 
criticality of applications. Smaller settings do a 
better job of identifying wait states but they create 
more overhead. 

 
2. Monitor system resource consumption in each 

guest at the process level to help correlate wait 
state events with their cause. Remember that 
metering package samples taken during wait state 
events are suspect so cross-check them with the 
wait state event log and value the affected 
metering package samples accordingly. 

 
3. Analyze the system resource consumption 

characteristics of any application being 
implemented in the virtual environment for the 
possible impact of wait state events. For example, 
would a ten second wait state event disable data 
replication between this application instance and 
its geographically separated paired instance? 

 
4. If the application is designed to run in an SMP 

environment and uses memory synchronization 
locks like mutex or futex locks, be sure the 
virtualized SMP environment possesses lock 
status capabilities. 

 
5. Check any scheduled activity the application 

performs to be sure it’s schedule does not conflict 
with those of other guests. Removing the 
synchronous timing of the cron job that performs 
backups for the three Linux Guests mitigated the 
wait state situation discussed in this paper. 

6. Check the ratio of virtual resource counts to 
physical resource quantities. The higher the ratio 
the greater the chances of resource contention 
and the more likely long wait state events will 
occur. Virtualization product vendor guidelines that 
take into account anticipated traffic volumes and 
application resource consumption characteristics 
are required for this analysis. 

 
7. Be sure to traffic capacity test applications being 

installed on the virtual system to insure they meet 
performance expectations and integrate well with 
other virtual system applications. This traffic 
testing applies to both new applications and 
applications being ported from standalone 
platforms. 

 
8. Summary 
This document discusses the behavior of the virtual 
environment when resource utilization is high and 
contention for these resources is great. It contains a 
description of the potential side effects of this 
contentious situation and supports the assertions made 
with real world data. An analysis of the data provides 
the basis for a list of issues raised from a conceptual 
perspective about implementing applications in the 
virtual environment. Conclusions are drawn from the 
issue discussion and implementation 
recommendations are made as a result. 
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