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What Do You 'Mean'? 
Revisiting Statistics for Web Response Time Measurements 

 

David M. Ciemiewicz 
(ciemo@pacbell.net) 

 
 

Using empirical data from an Internet/WAN distributed Web response time measurement system, 
this paper explores the relative applicability and usefulness of the geometric mean and geometric 
standard deviation, and introduces the lognormal distribution for quantifying the response time 
measurements. These statistics are particularly useful in the areas of Web content performance 
comparison and SLA monitoring of service providers such as Content Providers, CDNs, ASPs, 
MSPs, and Web Hosting companies. Some surprisingly counter-intuitive results are identified and 
discussed. Warning: improper use of traditional averages and standard deviations can financially 
hurt you, if not simply mislead you. 

 

 
Overview 
 
There is a push in the Internet industry and within 
corporate enterprise environments to measure end-
user response time experience to ensure 
satisfaction of services delivered as part of a 
proactive, Service Level Management (SLM) 
strategy [STUR00]. These measurements are made 
using synthetic transaction probes that are placed, 
not at the data center, but rather at locations 
distributed around the network, so as to better 
guage the end-user’s true experience. 
 
These measurements may be made to validate 
conformance with contractual Service Level 
Agreements (SLAs). Sometimes there are financial 
penalties for non-compliance. These SLAs are often 
based on the arithmetic mean and arithmetic 
standard deviation of periodic samples of service 
transactions over time. 
 
Yet it is common knowledge among practitioners of 
statistics that the average or arithmetic mean is often 
a misleading summary statistic for describing groups 
of measurements. [HUFF54]  This is especially true 
in the presence of occasional, anomalous network 
events that cause significant outliers in the response 
time measurements for the target services. 
 
Sometimes content or service developers attempt to 
make performance improvements using the 
arithmetic mean. It would be unfortunate if an 
assessment of improvement or no improvement 
were made based on data that was skewed upward 
by several seconds more than typical due to a 
temporary slowdown on an Internet backbone that is 
out of their control. This would certainly be a 
nuisance. 
 

However, it might be worse than simply “unpleasant” 
if a single network event sends the measured 
response time average value into SLA violation 
territory, even though the responses to the vast 
majority of your end-users are within SLA 
tolerances. 
 
To make better decisions, a better understanding of 
the fundamental statistics is needed to avoid being 
led astray by the occasional anomalous Internet or 
WAN network event. 
 
Just How Bad is the Problem? 
 
In the sets of samples used in this paper, the 
arithmetic means varied between the 52

nd
 

percentile and the 77
th

 percentile of their 
respective sample sets. Obviously the relationship 
between what we think of as “average” and what we 
intend to present as “representative” or “typical” (or 
even “repeatable”, “consistent”, or “comparable”) is 
tenuous at best. 
 
This problem is compounded by the fact that not 
only are the response time distributions right-tailed 
but that sporadic Internet network events that affect 
subsets of the user populations can create long 
response time outliers that significantly skew the 
average even more significantly to the right.  For 
small sets of samples, the arithmetic mean 
sometimes represented the 95

th
 percentile. 

 
Many papers and texts suggest that the geometric 
mean, median, or percentiles should be used as the 
summary descriptive statistics in preference to the 
arithmetic mean [BROW01]. Unfortunately, these 
admonitions assume the reader has a sufficient level 
of understanding of the underlying statistics to not 
only appreciate the advice, but also actually act 
upon it. 



In reality, most of us have forgotten the details of our 
introductory statistics courses and continue to fall 
back on the old stand-bys – the average (arithmetic 
mean) and the arithmetic standard deviation. 
 
This paper focuses on how the geometric mean and 
geometric standard deviation, as suggested by 
Overton in [OVER00], really do have the properties 
of insensitivity to outliers that we desire for 
accurately comparing sets of samples. It attempts to 
take the reader a little deeper into the statistics 
backed with real world example data and even 
introduces the concept of the lognormal distribution, 
which is related to the geometric mean and 
geometric standard deviation. 
 
But first, we need some background on what service 
response times we measured and how the 
measurements were made. 
 
Response Time Measurement System 
Description 
 
Logictier was a Managed Service Provider (MSP) 
providing complete outsourcing of all operational 
aspects of running large Web sites. As part of the 
service, Logictier offered performance SLAs with a 
financial penalty payable to the customer for missing 
the SLA. (Logictier shut down operations in May 
2001 due to the big Internet investment retreat of 
that year). 
 
To measure SLA compliance, and for other 
operational and research & development purposes, 
Logictier deployed a distributed Response Time 
Measurement System (RMS). This system consisted 
of a set of remotely distributed monitoring stations 
that periodically issued sets of synthetic HTTP 
requests across multiple backbone providers to 
measure the time to download a complete HTML 
Web page. 
 
Each synthetic transaction included DNS hostname 
resolution and requests for all attendant objects 
including assets from CDNs and ad services. Four 
simultaneous HTTP 1.1 requests were issued just as 
most Web browsers will do. 
 
Figure 1 shows a diagram of the RMS monitoring 
station network as of April 2001. By this time, 
Logictier had five RMS monitoring stations around 
the United States with a total of 24 T1 network lines 
from 5 major backbone providers connecting these 
stations to the Internet. (The location designations in 
Figure 1 are based on the closest airport designation 
or a similar abbreviation for the nearest city.) 
 

Figure 1 - RMS Network Overview 
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Now we’re ready to begin interpreting the data 
 
How Measurement Outliers Skew the Mean 
 
When attempting to compare measurements of web 
site response time performance, we want to be 
certain that our summaries of the measurements 
consider, but do not overly weight, the occasional 
Internet event that is outside of our control.  In other 
words, we want to reflect the experience of the 
Internet at large without being significantly swayed 
due to a brief (1-15 minute) event along only one of 
any number of backbone providers on the Internet. 
Remember that a few samples of any synthetic 
transaction methodology are only a small 
representative set of potentially tens of thousands, 
hundreds of thousands, or even millions of real end-
users across of thousands of major Internet routes. 
 
Tables 1 and 2 below illustrate the problem with 
using the arithmetic mean (or average) as the sole 
summary statistic.   
 
Table 1 contains fourteen measurements of a 
particular Web site’s page download times. Most 
measurements fall in a range of 2-8 seconds except 
for one measurement from location RWC via the 
ATT backbone.  
 
This single, anomalous measurement is 15 times 
longer than the next longest measurement. To 
illustrate the sensitivity of the means to this one 
outlier, Table 2 represents exactly the same data 
with one difference: a more typical response time 
from location RWC via ATT has been substituted. 
 
Note that the arithmetic mean, of all the descriptive 
statistics calculated, showed the most sensitivity to 
this anomalous, outlier measurement: a change from 
12,685 milliseconds to 5,037 milliseconds!  The 
median showed the least sensitivity and the 
geometric mean was next best. 



 

Date Time 
Monitoring 
Location 

Backbone 
Provider 

Page Total 
Time (millisecs)

01/23/01 10:31 RWC GTE          7,101 

01/23/01 10:31 NYC CW          6,768  

01/23/01 10:31 DFW CW          6,501  

01/23/01 10:31 RWC SPRINT          6,468  

01/23/01 10:31 NYC GTE          6,294  

01/23/01 10:31 NYC ATT          5,842  

01/23/01 10:31 DFW UUNET          5,535  

01/23/01 10:31 LAX GTE          4,696  

01/23/01 10:31 RWC CW          4,358  

01/23/01 10:31 DFW GTE          4,342  

01/23/01 10:31 LAX SPRINT          3,869  

01/23/01 10:31 NYC SPRINT          3,122  

01/23/01 10:31 DCA GTE          2,890  

01/23/01 10:31 RWC ATT          2,726  

  Descriptive Statistics Arith Mean          5,037  

   Geo Mean          4,803  

    Median          5,116  

Table 2- Page Total Time Sample Set with Outlier 
Replaced 

 
How a Single Provider “Outage” Affects the 
Mean 
 
Sometimes an external event, such as network 
congestion or failure of a line or router, will affect 
measurements from many routes. While this event 
affects a significant portion of your user population, it 
is out of your control and for all intents and purposes 
impossible to provide an SLA against. If you are 

measuring for performance tuning, this event 
significantly skews the mean, hiding the true 
improvements. 
 
For example, Table 3 shows an event for service 
provider GTE that impaired traffic for all measured 
GTE paths to the monitored Web site.  In this case, if 
the arithmetic mean were used as a basis of SLA 
measurements, a response time of over 51 seconds 
would most likely provoke an investigation of an SLA 
violation. Yet if GTE is not the bandwidth provider for 
the site, it is quite likely that no violation occurred. 
 
This truly emphasizes why relying on the arithmetic 
mean alone, without looking at any other data or 
statistics, is very dangerous when it comes to 
comparing the results of this sample group with 
another. 
 

Date Time 
Monitoring 
Location 

Backbone 
Provider 

Page Total 
Time 

(millisecs) 

01/22/01 06:16 DCA GTE 128,671 

01/22/01 06:16 RWC GTE 109,568 

01/22/01 06:16 DFW GTE 169,363 

01/22/01 06:16 LAX GTE 155,550 

01/22/01 06:16 NYC GTE 106,093 

01/22/01 06:16 NYC CW 11,777 

01/22/01 06:16 RWC SPRINT 9,259 

01/22/01 06:16 DFW UUNET 5,732 

01/22/01 06:16 NYC ATT 5,661 

01/22/01 06:16 LAX SPRINT 4,960 

01/22/01 06:16 NYC SPRINT 3,758 

01/22/01 06:16 RWC CW 2,412 

01/22/01 06:16 RWC ATT 2,225 

01/22/01 06:16 DFW CW 2,180 

 Descriptive Statistics Arith Mean          51,229  

  Geo Mean          15,044  

  Median            7,496  

Table 3 - Single Provider Event Affecting Multiple 
Paths 

 
(Re)introducing Some Statistical Concepts 
 
Now it is time to broaden our statistical toolbox 
beyond statistics 101 by gaining a deeper 
understanding of the geometric mean and by 
introducing the concepts of the geometric standard 
deviation, geometric confidence intervals, and the 
lognormal distribution. 
 
Another Perspective on the Geometric Mean 
 
In its basic interpretation, the geometric mean is the 
“central” value of a geometric sequence of values. 
However, there is another interpretation, as we will 
see, that is quite useful. 

Date Time 
Monitoring 
Location 

Backbone 
Provider 

Page Total 
Time 

(millisecs) 

01/23/01 10:31 RWC ATT      109,810  

01/23/01 10:31 RWC GTE          7,101  

01/23/01 10:31 NYC CW          6,768  

01/23/01 10:31 DFW CW          6,501  

01/23/01 10:31 RWC SPRINT          6,468  

01/23/01 10:31 NYC GTE          6,294  

01/23/01 10:31 NYC ATT          5,842  

01/23/01 10:31 DFW UUNET          5,535  

01/23/01 10:31 LAX GTE          4,696  

01/23/01 10:31 RWC CW          4,358  

01/23/01 10:31 DFW GTE          4,342  

01/23/01 10:31 LAX SPRINT          3,869  

01/23/01 10:31 NYC SPRINT          3,122  

01/23/01 10:31 DCA GTE          2,890  

 Descriptive Statistics Arith Mean        12,685  

   Geo Mean          6,254  

    Median          5,689  

Table 1 - Page Total Time Sample Set with 
Outlier 



 
First, in a geometric sequence, each value 
represents a constant multiple of the previous value 
in the sequence. The geometric mean is the central 
value that balances the ratio of the central value to 
the lowest value and the ratio of the highest value to 
the central value. For example, given two values, a 
and c, the geometric mean value b is between a and 
c such that: 
 

b

c

a

b
�  

 
Note that for a geometric sequence containing an 
odd number of values, the geometric mean value of 
the sequence is the middle or median value.  
 
This property of balancing the ratios between values 
proves to be quite useful and underlies the proof by 
Fleming and Wallace in [FLEM86] that the geometric 
mean is only way to appropriately summarize a set 
of normalized values such as those measured in 
benchmarks. 
 
Most texts and papers discussing the geometric 
mean (GM), including [ALLE90] and [BERK00], 
simply present the general equation for the 
geometric mean (GM) as: 
 

n

n
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However, this form of the equation hides another 
useful interpretation -- through a series of 
transformations, we discover that the geometric 
mean is also the antilog of the arithmetic mean of 
the natural log transformed (log-space) values of X 

or: 
 

)))n(exp(mean(lGM X�  

 
Where X represents all of the values xi and ln(X) 
represents all of the natural transformed values of X. 

 

Transformations of Geometric Mean Equations 

 
To demonstrate that the two forms of the geometric 
mean equation are equivalent, start with the classic 
representation of the geometric mean equation: 
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This same equation may be expressed in product 
form as: 
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Remember that log-space arithmetic has the useful 
properties of transforming multiplication into 
summation and exponentiation into multiplication: 
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Thus we can transform the product form equations 
of the geometric mean into summation form like so: 
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These summation form equations look very similar to 
the equations for computing the arithmetic mean. By 

substituting the relationship )ln(XY �  and using 

the equations for calculating the arithmetic mean 
(AM) or average: 
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We see that the geometric mean is really just the 
antilog of the arithmetic mean of the natural log 
transformed values of X: 
 

)))n(exp(mean(lGM X�  

This summation form of the geometric mean 
equation has some useful computational properties. 
For large numbers of samples, the sum of log-
transformed values is much less likely to overflow or 
underflow the precision and range capabilities of the 
native floating-point processor than is the product 
form of the equation. 

Also, the equation is easily expressed in 
programming languages that support operating on 
lists of numbers. For instance, a performance 
database built on a relational database would 
support an SQL expression such as: 

 
SELECT 

EXP(AVG(LN(RESPONSE_TIME))) 

AS GEOMEAN 

FROM 



 PERFORMANCE_TABLE 

WHERE 

 RESPONSE_TIME > 0 

 

Introducing the Geometric Standard Deviation 

 

Analogous to the geometric mean, we can compute 
a geometric standard deviation (GSd) as the antilog 
of the standard deviation of the natural log 
transformed values of X or: 
 

)))ln(exp(stdev(GSd X�  

 

The basic summation forms of the arithmetic 
standard deviation may be expressed as: 
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So the GSd may also be computed as: 
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As before with the geometric mean, it is easy to 
calculate the geometric standard deviation in list 
oriented languages such as SQL: 

 
SELECT 

EXP(STDDEV(LN(RESPONSE_TIME))) 

AS GEOSTDEV 

FROM 

 PERFORMANCE_TABLE 

WHERE 

 RESPONSE_TIME > 0 
 

 
 

Introducing The Lognormal Distribution 
 
Given the relationships we’ve seen for the geometric 
mean and geometric standard deviation to log 
transformed values, one might wonder if there are 
any applicable distributions of log transformed 
values. 
 
In statistics, there is a well-known right-tailed 
distribution called the lognormal distribution that is 
frequently used in describing phenomena. 
 
The lognormal distribution is the normal distribution 
of the log transformed (log-space) values. Figure 2 
illustrates a lognormal versus normal distribution.  
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Figure 2 - Lognormal vs. Normal Distribution 

 
Figure 3 shows the same data with log transformed 
values of X. Here the symmetric properties of a 
normal distribution in log-space – the lognormal 
distribution – really stand out. 
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Figure 3 - Lognormal vs. Normal Distribution in 
Log-space 



While the lognormal distribution is a tried and true 
tool in other disciplines (geneticists use it for 
analyzing the fluorescence of bacteria with certain 
genetic markers), it appears to be largely ignored in 
computing and networking disciplines. 
 
Unfortunately, queuing theory and performance 
modeling texts such as Kleinrock [KLEI75], Allen 
[ALLE90], Gross [GROS98], and Gunther [GUNT00] 
make no mention of the lognormal distribution and 
rather focus on the markovian (memory-less) 
exponential distribution and related non-markovian 
Erlang (gamma) distribution for service time 
modeling. This emphasis on modeling with these 
distributions may bias practitioners away from 
looking at other distributions, such as the lognormal. 
 
In a discussion of the lognormal and Weibull 
distributions [TART00], Tarter suggests that, 
“despite the major differences between the actual 
formulas for these two curves, these substantially 
different expressions can yield nearly 
indistinguishable curves.” Similarly, Figure 4 
illustrates that it is possible to select parameters for 
the lognormal and Erlang (gamma) distributions 
whereby the two are very close indeed. 
 
As we will see, the lognormal distribution has 
additional useful properties for analyzing and 
modeling Web response times and other network 
service times. 
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Figure 4 - Lognormal vs. Erlang / Gamma 
Distribution 

 
Geometric Statistics and the Lognormal 
 
Although not widely mentioned in the literature, the 
geometric descriptive statistics have much in 
common with the lognormal distribution. The 

geometric mean (GM) is the antilog of the log-space 

mean of the lognormal distribution (�ln). Similarly, the 
geometric standard deviation (GSd) is the antilog of 
the log-space standard deviation of the lognormal 

distribution (�ln). 
 
Given these relationships, we can use the geometric 
mean and the geometric standard deviation or the 
lognormal mean and lognormal standard deviation. 
We can estimate lognormal or geometric confidence 
intervals for lognormally distributed data as we 
would do for a normal distribution. 
 
If the data is lognormally distributed, these 
geometric confidence intervals will much more 
accurately and appropriately describe the data than 
will using the arithmetic mean and arithmetic 
standard deviation based confidence intervals. 
 
Table 4 summarizes the relationships of the 
geometric statistics to the corresponding lognormal 
statistics. 
 

Table 4 - Relationships of Geometric and 
Lognormal Statistics 

 
At first, it may seem strange to use multiplication, 
division, and exponentiation to calculate the 
geometric confidence intervals. However, remember 
that the geometric mean is about ratios and 
geometric statistics abide by the rules of logarithmic 
arithmetic for their log-space equivalents. 
 
Real World Geometric Confidence Intervals 
 
At this point, this may all seem statistical and 
mathematical mumbo-jumbo. However, this 
background is required to appropriately interpret the 
results from the response time measurement 
system. 
 

Descriptive 
Statistic 

Geometric 
(real-space) 

Lognormal 
(log-space) 

Relationship 

Geometric 
Mean 

GM �ln GM = 

exp(�ln) 

Geometric 
Standard 
Deviation 

GSd �ln 
GSd = 

exp(�ln) 

First 
Confidence 
Interval 
~68% 

[GM � GSd, 

GM � GSd]  

[�ln - �ln, 

�ln + �ln] 

 

Second 
Confidence 
Interval 
~95% 

[GM � GSd
2
, 

GM � GSd
2
]  

[�ln  – 2�ln, 

�ln  + 2�ln] 

 

Third 
Confidence 
Interval 
~99% 

[GM � GSd
3
, 

GM � GSd
3
]  

[�ln – 3�ln, 

�ln + 3�ln] 

 



We had monitored a particular Web site, Site A, for 
30 days. Synthetic page transactions against the 
home page were performed every 15 minutes from 5 
locations via up to a total of 15 T1 network 
connections. (The system was under construction 
during this measurement period). 
 
The web page was updated on an almost daily 
basis. It consisted of 23 HTML and image objects 
and page weight varied in size between 36,027 and 
40,232 bytes. 
 
Table 5 contains the results of the confidence 
interval calculations for this long-term sample set. 
The geometric confidence intervals yielded almost 
textbook values for the confidence intervals: 67.0%, 
95.3%, and 99.9% whereas the values for an ideal 
normal distribution are 68.3%, 95.4%, and 99.7%. 
Based on this alone, it certainly appears that the 
data might be normally distributed in log-space. 
 
Also it is clear that the geometric mean more closely 
estimates the median of the page times than does 

the arithmetic mean. 
 
Calculating standard arithmetic confidence intervals 
based on the arithmetic mean and arithmetic 
standard deviation yielded results that were so far 
off what would be expected if the data were normally 
distributed that their use seems inappropriate for 
describing the data. All of the arithmetic confidence 
interval lower bound values computed are less than 
the minimum value measured and 2 of the values 
are negative -- negative Web page download times 
certainly would be a wonderful thing. Also the first 
confidence interval bounds more than 92% of the 
values.  This indicates that the arithmetic variance 
and arithmetic standard deviation are so high that 
the confidence interval is casting a very wide net 
and not localizing the arithmetic mean very well. 
 
Figure 5 illustrates just how well the lognormal 
distribution fits the Page Time data compared to the 
normal distribution. 
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Figure 5 - Site A Histogram with Lognormal and 
Normal Curves 
 
Calculating a goodness-of-fit using summed squared 
errors (SSE): 

2

1
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The lognormal distribution has a relatively better 
SSE value of only 0.007 compared to the normal 
distribution that has an SSE value of  0.027. (The 
SSE was chosen over other goodness-of-fit tests 
such as the Chi-Square, Pearson, or Neyman tests 
as a practical matter of choice - the normalizing 
denominators in these tests often resulted in division 
by zero in the case of sparse tails or floating-point 
precision underflow when evaluating the tail.) 
 
Clearly, in this case, the geometric descriptive 

Table 5 – Site A: Arithmetic and Geometric 
Confidence Intervals 

Arithmetic Confidence Intervals 

Bound 
Page Time 
(millisecs) 

Percent 
Rank 

Confidence 
Interval 

AM - 3 * ASd     -9,937.5 0.00% 99.65%

AM - 2 * ASd     -4,743.5 0.00% 98.18%

AM - 1 * ASd          450.5 0.00% 92.19%

Minimum          511.0 0.00%  

Median       5,027.0 50.00%  

AM       5,644.6 60.78%  

AM + 1 * ASd     10,838.6 92.19% 92.19%

AM + 2 * ASd     16,032.6 98.18% 98.18%

AM + 3 * ASd     21,226.7 99.65% 99.65%

Maximum   458,289.0 100.00% 

 

Geometric Confidence Intervals 

Bound 
Page Time 
(millisecs) 

Percent 
Rank 

Confidence 
Interval 

Minimum          511.0 0.00%  
GM / GSd^3          712.0 0.04% 99.88%

GM / GSd^2       1,331.0 2.95% 95.31%

GM / GSd^1       2,487.9 18.51% 67.03%

GM       4,650.5 43.67%  

Median       5,027.0 50.00%  

GM * GSd^1       8,692.9 85.53% 67.03%

GM * GSd^2     16,249.2 98.26% 95.31%

GM * GSd^3     30,373.8 99.92% 99.88%

Maximum   458,289.0 100.00% 



statistics and the lognormal distribution much more 
accurately describe and fit the page time data than 
do the normal distribution based Arithmetic 
descriptive statistics. 
 
Another Example with Counterintuitive Results 
 
Now we’ll look at the case of another subject Web 
site page – the static home page of Site B. Site B is 
a very lightly loaded site that significantly changed 

its home page three times in four days with some 
rather counterintuitive results: 
 

�� Doubling the total page weight bytes 
reduced the total page time by 
approximately 40% 

�� A 14% increase in total page weight bytes 
had no significant increase in total page 
times. 

 

  Site B - Home Page 1 Site B - Home Page 2 Site B - Home Page 3 Site B - Aggregate 

First time stamp 2001/04/29 20:02 2001/05/01 00:02 2001/05/01 23:02 2001-04-29 20:02 

Last time stamp 2001/04/30 23:02 2001/05/01 22:02 2001/05/03 21:02 2001-05-03 21:02 

Total samples         644              529          1,081          2,254      

Sample groups           27                22               46               97      

Samples / group           24                24               24               23      

Total Errors Ignored             0                  2                 0                 2      

Max Objects / Page           62                44               44               62      

Max Page Weight 
Bytes 

   37,011         69,795        75,015        75,015      

Mean Bytes / Object         597        1,586        1,705      

Total Page Time 
Stats (milliseconds) 

Page 
Time 
(ms)   

Page 
Time 
(ms)   

Page 
Time 
(ms)   

Page 
Time 
(ms)   

Minimum      1,602           1,920          1,645          1,602      

Maximum    37,408         25,660      174,037      174,037      

Arith Mean (AM)   12,812.6        9,659.9        9,811.2      10,634.1    

Arith Stdev (ASd)     4,920.7        3,395.5        6,274.5        5,514.0    

Geo Mean (GM)   11,805.4        9,053.3        9,013.6        9,746.6    

Geo Stdev (GSd)        1.534           1.452           1.486           1.519    

Median   12,714.5        9,364.0        9,171.0        9,870.5    

Arith Conf Intrvl 

Page 
Time 
(ms) 

Percent 
Rank Interval 

Page 
Time 
(ms) 

Percent 
Rank Interval

Page 
Time 
(ms) 

Percent 
Rank Interval 

Page 
Time 
(ms) 

Percent 
Rank Interval

AM - 3 * ASd  - 1,949.6     0.00%   99.22%     - 526.5     0.00%   99.19%  - 9,012.2     0.00%   99.82%  - 5,908.0     0.00%   99.63%

AM - 2 * ASd     2,971.1      0.80%   96.42%     2,869.0      0.54%   96.62%  - 2,737.7     0.00%   99.39%     - 394.0     0.00%   98.42%

AM - 1 * ASd     7,891.9    15.47%   71.12%     6,264.5    16.72%   69.88%     3,536.8      1.57%   94.28%     5,120.1      6.29%   84.59%

Median   12,714.5    50.00%       9,364.0    50.00%       9,171.0    50.00%       9,870.5    50.00%   

AM   12,812.6    51.13%       9,659.9    55.19%       9,811.2    57.63%     10,634.1    56.07%   

AM + 1 * ASd   17,733.4    86.59%   71.12%   13,055.4    86.60%   69.88%   16,085.7    95.85%   94.28%   16,148.2    90.88%   84.59%

AM + 2 * ASd   22,654.1    97.22%   96.42%   16,450.9    97.16%   96.62%   22,360.2    99.39%   99.39%   21,662.2    98.42%   98.42%

AM + 3 * ASd   27,574.8    99.22%   99.22%   19,846.4    99.19%   99.19%   28,634.6    99.82%   99.82%   27,176.2    99.63%   99.63%

Geo Conf Intrvl 

Page 
Time 
(ms) 

Percent 
Rank Interval 

Page 
Time 
(ms) 

Percent 
Rank Interval

Page 
Time 
(ms) 

Percent 
Rank Interval 

Page 
Time 
(ms) 

Percent 
Rank Interval

GM / GSd ** 3     3,269.2      0.85%   99.15%     2,957.6      0.56%   99.44%     2,746.2      0.34%   99.48%     2,780.1      0.53%   99.32%

GM / GSd ** 2     5,015.6      3.13%   96.11%     4,294.3      2.95%   95.79%     4,081.2      2.50%   96.51%     4,223.4      2.37%   96.53%

GM / GSd ** 1     7,694.9    14.82%   72.70%     6,235.2    16.28%   70.64%     6,065.2    16.27%   69.99%     6,415.9    16.48%   68.81%

GM   11,805.4    43.39%       9,053.3    46.83%       9,013.6    48.23%       9,746.6    48.86%   

Median   12,714.5    50.00%       9,364.0    50.00%       9,171.0    50.00%       9,870.5    50.00%   

GM * GSd ** 1   18,111.6    87.52%   72.70%   13,145.0    86.91%   70.64%   13,395.3    86.26%   69.99%   14,806.5    85.29%   68.81%

GM * GSd ** 2   27,786.5    99.24%   96.11%   19,086.1    98.74%   95.79%   19,907.1    99.01%   96.51%   22,493.0    98.90%   96.53%

GM * GSd ** 3   42,629.6  100.00%   99.15%   27,712.3  100.00%   99.44%   29,584.4    99.82%   99.48%   34,170.0    99.85%   99.32%

             

Table 6 – Site B Response Time Results 



Armed with the geometric descriptive statistics and 
the lognormal distribution, we can validate that these 
results are indeed the case and then we can go 
hunting for explanations. 
 
Table 6 summarizes the descriptive statistics for 
Web Site B looking at the three different home 
pages one at a time and in aggregate for the whole 
sampling period. 
 
First note that even though the total page weights of 
Home Page 2 and Home Page 3 are 69,795 bytes 
and 75,015 bytes, respectively, versus the 37,011 
bytes of Home Page 1 (roughly twice the bytes), the 
Home Page 2 and Home Page 3 arithmetic mean, 
geometric mean, and median total page times are all 
23% to 28% less than the corresponding total page 
time statistics for Home Page 1.  The most likely 
explanation is the 29% reduction in object requests 
made per page from 62 down to 44. 
 
Second, we noted that the 14% page weight bytes 
increase (from Home Page 2 to Home Page 3) had 
no significant increase in the total page times. 
Relative to Home Page 1 total page times, Home 
Page 2 showed a 1.2% decrease in arithmetic 
mean, a 0.3% increase in geometric mean, and a 
1.5% increase in median value. Value discrepancies 
appear to be just noise. 
 
Figures 6 and 7 show the data histograms and 
corresponding lognormal distributions for Site B 
Home Pages 1, 2, and 3. These charts confirm what 
we saw in the descriptive statistics: 
 

�� Home Pages 2 and 3 with fewer objects 
typically took less total time than Home 
Page 1 with more objects, despite the fact 
that the total page weight of Home Page 1 
was approximately have the weight of the 
other two pages. 

�� The total page times for Home Pages 2 and 
3 are, for all intents and purposes, 
indistinguishable. 

 
The added advantage of using these charts for 
characterizing the total page time is that they 
illustrate timing relationships as whole better than 
relying on the descriptive statistics values alone. 
They confirm that the tiny differences observed are 
relatively insignificant. 
 
Zhi’s recent paper on web page design and 
download performance [ZHI01] provides a model for 
web page times based on number of packets, rather 
than total page weight. His paper demonstrates how 
number of packets is correlated to number of page 
objects and his work demonstrates similar 
counterintuitive results as measured for Site B. 
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Figure 6 - Site B Home Page Histograms 
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Figure 7 - Site B Home Page Lognormal 
Distributions 
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Figure 8 - Site B Normal Distributions 
 
 
How Outliers Skew the Variance 
 
Figure 8 shows the normal distributions that 
correspond to the data in Figure 6. Clearly some 
measurements are heavily influencing the computed 



arithmetic variance and standard deviation and thus 
are affecting the shape of the distribution. In this 
case, only 2 measurements out of 1,081, less than 
0.2%, were all it took to disturb the curves. As seen 
in “How Outliers Skew the Mean”, these two 
measurements could simply be two ephemeral 
events on the Internet at large. 
 
If we had looked at Figure 8 without looking at 
Figures 6 and 7 e might be mislead into believing 
that the total page times for Site B Home Pages 2 
and 3 were significantly different when they are, in 
fact, almost identical. 
 
We see the same problem in the Arithmetic 
confidence intervals for Site B Home Page 3 and for 
the Site B Home Page Aggregate. The outliers 
broadly widen the corresponding arithmetic 
confidence intervals whereas the corresponding 
geometric confidence intervals are relatively 
uninfluenced by the outliers. 
 
Table 7 illustrates the affect of trimming (removing) 
the outliers from data set of measurements for Site B 
Home Page 3. 
 
Clearly one or two anomalous events on the Internet 
are sufficient to wreak havoc on any SLA or 
performance comparison decisions based the 
arithmetic standard deviation – the results can be 
swayed by multiple seconds of time. In the case of 
the upper bound of the first confidence interval 

(mean + 1 stdev), the swing was approximately 
almost 3 seconds or 18% (Trim 2 relative to Trim 0).  
 
On the other hand, decisions based on the 
geometric mean and the geometric standard 
deviation show much more stability in the presence 
of anomalous events. In the corresponding case of 
the high bound of the first geometric confidence 
interval (GM * GSd ^ 1), the swing was 
approximately 0.25 seconds or under 2%, which is 
not significant. 
 
Why Doctor the Data If You Don’t Have To? 
 
An all too popular approach to preventing outliers 
from significantly skewing the mean and variance is 
to throw out values that are at either extreme of the 
distribution. There is an argument to be made that 
manipulating the data to make it fit a desired set of 
descriptive statistics rather than using appropriate 
descriptive statistics to describe the data, no matter 
the intent, is simply bad statistics. 
 
In particular, after examining many papers and texts 
on statistics and performance measurements, it is 
finally become clear to me, just in the few months 
leading up to the writing of this paper, that many 
data sets may be better fit, modeled, or described 
with the lognormal distribution and geometric 
statistics than with the more commonplace normal 
distribution and arithmetic statistics. By using the 
correct statistical tools, the whole messy business of 
trimming or otherwise doctoring the data might be 
avoided. 
 
Remember the stories of how scientists had for 
years thrown out data values that indicated a hole in 
the ozone layer existed above Antarctica. Trimming 
data to meet one’s purposes is somewhat dubious at 
best and misleading at worst. 
 
Final Example: Single Object Request 
Measurements 
 
In trying to establish a baseline measurement for the 
network, Logictier set up a reference server which 
would support synthetic transactions from the RMS 
monitoring stations requesting single files of 1000, 
10,000, and 100,000 bytes. The 1000 byte file was 
chosen in particular to represent HTTP requests for 
tiny objects requests that were smaller than the 
Ethernet Maximum Transmission Unit (MTU) of 1500 
bytes. 
 
While examining total object request times from a 
single location to the reference target server, I was 
initially disheartened that not even the geometric 
statistics yielded decent confidence intervals. See 
Table 8 – Total Page Time DNS + HTTP. 
 

Table 7- The Effects Trimming on Site B Home 
Page 3 Descriptive Statistics 

 Trim 0 Trim 1 Trim 2 

3 Longest Measurements (milliseconds) 

5/2/2001 6:02       174,037        174,037        174,037  

5/2/2001 9:02         55,672          55,672          55,672  

5/2/2001 11:02         27,742          27,742          27,742  

    

Total Measurements           1,081           1,080           1,079 

Median           9,171            9,170            9,168  

    

Mean           9,811            9,659            9,617  

Variance  39,368,975   14,386,853   12,434,389  

Stdev           6,274            3,793            3,526  

Mean + 1 Stdev         16,086          13,452          13,143  

Mean - 1 Stdev           3,537            5,866            6,090  

    

Geometric Mean           9,014            8,989            8,974  

Geometric Stdev           1.486            1.471            1.465  

GM * GSd ^ 1         13,393          13,221          13,148  

GM / GSd ^ 1           6,066            6,112            6,125  

Lognormal E(X)           9,749            9,683            9,653  

Lognormal Var(X)  16,134,463   15,047,168   14,634,134  

Lognormal Stdev(X)           4,017            3,879            3,825  



However, upon closer examination, the total object 
request times included DNS lookups that added 
significant variance to the data. Since DNS lookups 
are usually cached by the Web browser and are not 
performed for every object request, using the 
measurement times for the HTTP request / response 
only, without the DNS lookup time was justifiable. To 
make matters worse, since DNS lookups were 
obtained from geographically distributed 

authoritative servers, if the intent was to study the 
effects of physical distance from the server, 
eliminating the DNS times is doubly justified.  
 
Table 8 – Total Page Time, HTTP Only, shows that 
removing the DNS times and focusing solely on the 
HTTP request / response does yield tighter 
geometric confidence intervals indicating that the 
DNS times might be better studied independently 
from the single object request measurements and 
that the lognormal distribution may be a better fit for 
the data than the normal distribution. 
 
Summary 
 
As many before me have pointed out, relying on the 
arithmetic mean and arithmetic standard deviation 
can prove unreliable, especially when comparisons 
of Web Site page times for performance and for 
financially binding SLAs are in effect. 
 
Also note that the literature is loaded with Web 
response time distributions that appear to be 
lognormally distributed just like the examples 
presented in this paper. This gives cause to believe 
that the statistics in this paper are likely applicable.  
For just a few examples, see [MILL01], [TU01], and 
[LOOS00]. 
 
The key points to take away are: 
 

�� In small sets of samples, the arithmetic 
mean is highly sensitive to outliers whereas 
the median and geometric mean are 
relatively insensitive to outliers. 

�� The sensitivity of the arithmetic mean to a 
single anomalous Internet event can be on 
the order of seconds or even tens of 
seconds, thus causing a false-positive 
assessment of a performance SLA violation. 

�� In both large and small sets of samples, the 
arithmetic standard deviation and variance 
are highly sensitive to single anomalous 
Internet events that cause poor performance 
outliers. 

�� The geometric mean, geometric standard 
deviation, and geometric confidence 
intervals are superior to their arithmetic 
versions because they are less sensitive to 
single outliers. 

�� The lognormal distribution is the normal 
distribution of the log-transformed service or 
response times. 

�� The lognormal distribution very often fits 
Web site response time data and this 
reinforces the guidance of using the 
geometric mean and geometric standard 
deviation in characterizing Web site 
response times. 

Table 8 - Single 1000 Byte Object Request Times, 
with and without DNS Lookup Times, DCA 
Location Only 

  1000 Byte Object from DCA 

  
Total Page Time 

DNS + HTTP 
Total Page Time 

HTTP Only 

First time stamp 2001/04/29 20:00 2001/04/29 20:00 

Last time stamp 2001/05/03 22:00 2001/05/03 22:00 

Total samples      2,277          2,277    

Total Errors Ignored             1                 1    

Maximum objects             1                 1    

Maximum bytes      1,000          1,000    

Total Page Time  Stats 
(milliseconds) 

Page 
Time (ms)   

Page 
Time (ms)   

Minimum         281             191    

Maximum    55,360          3,618    

Arith Mean (AM)        528.1          267.8   

Arith Stdev (ASd)     2,778.8          245.3   

Geo Mean (GM)        369.2          248.7   

Geo Stdev (GSd)        1.442          1.320   

Median        335.5          223.0   

          

Arith Conf Intrvl 
Page 

Time (ms) Interval 
Page 

Time (ms) Interval 

AM - 3 * ASd  - 7,808.2   99.77%     - 468.3   99.53%

AM - 2 * ASd  - 5,029.4   99.76%     - 222.9   99.51%

AM - 1 * ASd  - 2,250.7   99.20%         22.4   99.39%

Median        335.5   50.00%        223.0   50.00%

AM        528.1   97.68%        267.8   67.78%

AM + 1 * ASd     3,306.9   99.20%        513.1   99.39%

AM + 2 * ASd     6,085.6   99.76%        758.4   99.51%

AM + 3 * ASd     8,864.4   99.77%     1,003.8   99.53%

Geo Conf Intrvl         

GM / GSd ** 3        123.1   99.02%        108.1   99.50%

GM / GSd ** 2        177.5   98.99%        142.7   99.07%

GM / GSd ** 1        256.0   97.81%        188.4   87.95%

Median        335.5   50.00%        223.0   50.00%

GM        369.2   63.19%        248.7   61.45%

GM * GSd ** 1        532.4   97.81%        328.4   87.95%

GM * GSd ** 2        767.8   98.99%        433.5   99.07%

GM * GSd ** 3     1,107.2   99.02%        572.2   99.50%



�� The lognormal distribution, similar to it’s 
geometric cousins, is relatively insensitive to 
anomalous Internet events and thus should 
be used for comparing distributions of 
response times. 

�� And lastly, really look at your data, the 
results can be surprising counter-intuitive. 
You never know when doubling you page 
weight might result in a 25% reduction in 
page download times. 

 
In short, I hope I have successfully demonstrated 
the value of going beyond the average and statistics 
101 and have inspired you to add the geometric 
statistics and lognormal distribution to your toolkit for 
evaluating Web, network, and application service 
times.  
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