

TPC BENCHMARK™ C

Standard Specification

Revision 5.0

February 26, 2001

Transaction Processing Performance Council (TPC)

www.tpc.org
info@tpc.org

© 2001 Transaction Processing Performance Council

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 2 of 130

Acknowledgments

The TPC acknowledges the substantial contribution of François Raab, consultant to the TPC-C subcommittee and
technical editor of the TPC-C benchmark standard. The TPC also acknowledges the work and contributions of the
TPC-C subcommittee member companies: Amdahl, Bull, CDC, DEC, DG, Fujitsu/ICL, HP, IBM, Informix, Mips,
Oracle, Sequent, Sun, Sybase, Tandem, and Unisys.

TPC Membership
(as of February 2001)

Acer Hewlett Packard Oracle
BEA Hitachi Progress Software
Bull IBM SCO
Compaq Informix Fujitsu-Siemens
DataReturn Intel Silicon Graphics Inc.
Dell Microsoft Sun Microsystems
EDS NCR Sybase
EMC NEC Toshiba
Fujitsu Network Appliance Unisys
 Whitecross Data Exploration

Document History

 Date Version Description
 22 June 1992 Draft 6.6 Mail ballot version (proposed standard)
 13 August 1992 Revision 1.0 Standard specification released to the public
 1 June 1993 Revision 1.1 First minor revision
 20 October 1993 Revision 2.0 First major revision
 15 February 1995 Revision 3.0 Second major revision
 4 June 1996 Revision 3.1 Minor changes to rev 3.1.
 27 August 1996 Revision 3.2 Changed mix back to 3.0 values.
 12 September 1996 Revision 3.2.1 Fixed Member list and added index
 15 January 1997 Revision 3.2.2 Added wording for TAB Ids #197, 221 & 224
 6 February 1997 Revision 3.2.3 Added wording for TAB Ids #205, 222 & 226
 8 April 1997 Revision 3.3 New Clauses 2.3.6 & 9.2.2.3 (TAB Id #225)
 9 April 1997 Revision 3.3.1 Wording added for availability date in Clause 8.1.8.3
 25 June 1997 Revision 3.3.2 Editorial changes in Clauses 8.1.6.7 and 9.1.4
 16 April 1998 Revision 3.3.3 Editorial changes in Clauses 2.5.2.2 and 4.2.2
 24 August 1998 Revision 3.4 New Clause 5.7 and changed wording in Clause 8.3
 25 August 1999 Revision 3.5 Modify wording in Clause 7.1.3
 18 October 2000 Revision 5.0 Change pricing, 2 Hour Measurement, 60 Day Space
 6 December 2000 Revision 5.0 7x24 Maintenance, Mail Ballot Draft
 26 February 2001 Revision 5.0 Official Version 5.0 Specification

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 3 of 130

TPC Benchmark™, TPC-C, and tpmC are trademarks of the Transaction Processing Performance Council.

Permission to copy without fee all or part of this material is granted provided that the TPC copyright notice, the title
of the publication, and its date appear, and notice is given that copying is by permission of the Transaction
Processing Performance Council. To copy otherwise requires specific permission.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 4 of 130

TABLE OF CONTENTS

Acknowledgments .. 2
TPC Membership... 2
Acer 2

TABLE OF CONTENTS... 4

Clause 0: PREAMBLE .. 6
0.1 Introduction... 6
0.2 General Implementation Guidelines.. 7
0.3 General Measurement Guidelines .. 8

Clause 1: LOGICAL DATABASE DESIGN.. 9
1.1 Business and Application Environment.. 9
1.2 Database Entities, Relationships, and Characteristics...10
1.3 Table Layouts..10
1.4 Implementation Rules ..17
1.5 Integrity Rules...18
1.6 Data Access Transparency Requirements..19

Clause 2: TRANSACTION and TERMINAL PROFILES ...20
2.1 Definition of Terms..20
2.2 General Requirements for Terminal I/O...22
2.3 General Requirements for Transaction Profiles..25
2.4 The New-Order Transaction ..27
2.5 The Payment Transaction ...32
2.6 The Order-Status Transaction..37
2.7 The Delivery Transaction ..40
2.8 The Stock-Level Transaction ..44

Clause 3: TRANSACTION and SYSTEM PROPERTIES..47
3.1 The ACID Properties ...47
3.2 Atomicity Requirements ..47
3.3 Consistency Requirements..48
3.4 Isolation Requirements ..51
3.5 Durability Requirements ...57

Clause 4: SCALING and DATABASE POPULATION...60
4.1 General Scaling Rules ..60
4.2 Scaling Requirements ...60
4.3 Database Population ..63

Clause 5: PERFORMANCE METRICS and RESPONSE TIME ..68
5.1 Definition of Terms..68
5.2 Pacing of Transactions by Emulated Users ...68
5.3 Response Time Definition ...71
5.4 Computation of Throughput Rating..72
5.5 Measurement Interval Requirements ...73
5.6 Required Reporting...75
5.7 Primary Metrics...77

Clause 6: SUT, DRIVER, and COMMUNICATIONS DEFINITION..78
6.1 Models of the Target System...78
6.2 Test Configuration...79

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 5 of 130

6.3 System Under Test (SUT) Definition ..79
6.4 Driver Definition ..80
6.5 Communications Interface Definitions ...80
6.6 Further Requirements on the SUT and Driver System..81

Clause 7: PRICING..84
7.1 Pricing Methodology ..84
7.2 Priced System..86
7.3 Maintenance..88
7.4 Required Reporting...89

Clause 8: FULL DISCLOSURE...90
8.1 Full Disclosure Report Requirements ..90
8.2 Availability of the Full Disclosure Report..100
8.3 Revisions to the Full Disclosure Report..100
8.4 Official Language ..101

Clause 9: AUDIT..102
9.1 General Rules..102
9.2 Auditor's check list..102

Index 107

Appendix A: SAMPLE PROGRAMS...110
A.1 The New-Order Transaction ..110
A.2 The Payment Transaction ...113
A.3 The Order-Status Transaction ...115
A.4 The Delivery Transaction..117
A.5 The Stock-Level Transaction ..119
A.6 Sample Load Program..120

Appendix B: EXECUTIVE SUMMARY STATEMENT ...133

Appendix C: NUMERICAL QUANTITIES SUMMARY ..137

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 6 of 130

Clause 0: PREAMBLE

0.1 Introduction

TPC Benchmark™ C (TPC-C) is an OLTP workload. It is a mixture of read-only and update intensive transactions
that simulate the activities found in complex OLTP application environments. It does so by exercising a breadth of
system components associated with such environments, which are characterized by:

• The simultaneous execution of multiple transaction types that span a breadth of complexity

• On-line and deferred transaction execution modes

• Multiple on-line terminal sessions

• Moderate system and application execution time

• Significant disk input/output

• Transaction integrity (ACID properties)

• Non-uniform distribution of data access through primary and secondary keys

• Databases consisting of many tables with a wide variety of sizes, attributes, and relationships

• Contention on data access and update

The performance metric reported by TPC-C is a "business throughput" measuring the number of orders processed
per minute. Multiple transactions are used to simulate the business activity of processing an order, and each
transaction is subject to a response time constraint. The performance metric for this benchmark is expressed in
transactions-per-minute-C (tpmC). To be compliant with the TPC-C standard, all references to tpmC results must
include the tpmC rate, the associated price-per-tpmC, and the availability date of the priced configuration.

Although these specifications express implementation in terms of a relational data model with conventional locking
scheme, the database may be implemented using any commercially available database management system (DBMS),
database server, file system, or other data repository that provides a functionally equivalent implementation. The
terms "table", "row", and "column" are used in this document only as examples of logical data structures.

TPC-C uses terminology and metrics that are similar to other benchmarks, originated by the TPC or others. Such
similarity in terminology does not in any way imply that TPC-C results are comparable to other benchmarks. The
only benchmark results comparable to TPC-C are other TPC-C results conformant with the same revision.

Despite the fact that this benchmark offers a rich environment that emulates many OLTP applications, this
benchmark does not reflect the entire range of OLTP requirements. In addition, the extent to which a customer can
achieve the results reported by a vendor is highly dependent on how closely TPC-C approximates the customer
application. The relative performance of systems derived from this benchmark does not necessarily hold for other
workloads or environments. Extrapolations to any other environment are not recommended.

Benchmark results are highly dependent upon workload, specific application requirements, and systems design
and implementation. Relative system performance will vary as a result of these and other factors. Therefore, TPC-C
should not be used as a substitute for a specific customer application benchmarking when critical capacity
planning and/or product evaluation decisions are contemplated.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 7 of 130

Benchmark sponsors are permitted several possible system designs, insofar as they adhere to the model described
and pictorially illustrated in Clause 6. A Full Disclosure Report of the implementation details, as specified in Clause
8, must be made available along with the reported results.

Comment: While separated from the main text for readability, comments are a part of the standard and must be
enforced. However, the sample programs, included as Appendix A, the summary statements, included as Appendix
B, and the numerical quantities summary, included as Appendix C, are provided only as examples and are
specifically not part of this standard.

0.2 General Implementation Guidelines

The purpose of TPC benchmarks is to provide relevant, objective performance data to industry users. To achieve
that purpose, TPC benchmark specifications require that benchmark tests be implemented with systems, products,
technologies and pricing that:

• Are generally available to users.

• Are relevant to the market segment that the individual TPC benchmark models or represents (e.g. TPC-A
models and represents high-volume, simple OLTP environments).

• A significant number of users in the market segment the benchmark models or represents would plausibly
implement.

The use of new systems, products, technologies (hardware or software) and pricing is encouraged so long as they
meet the requirements above. Specifically prohibited are benchmark systems, products, technologies, pricing
(hereafter referred to as "implementations") whose primary purpose is performance optimization of TPC benchmark
results without any corresponding applicability to real-world applications and environments. In other words, all
"benchmark specials," implementations that improve benchmark results but not real-world performance or pricing,
are prohibited.

The following characteristics should be used as a guide to judge whether a particular implementation is a
benchmark special. It is not required that each point below be met, but that the cumulative weight of the evidence be
considered to identify an unacceptable implementation. Absolute certainty or certainty beyond a reasonable doubt
is not required to make a judgment on this complex issue. The question that must be answered is this: based on the
available evidence, does the clear preponderance (the greater share or weight) of evidence indicate that this
implementation is a benchmark special?

The following characteristics should be used to judge whether a particular implementation is a benchmark special:

• Is the implementation generally available, documented, and supported?

• Does the implementation have significant restrictions on its use or applicability that limits its use beyond
TPC benchmarks?

• Is the implementation or part of the implementation poorly integrated into the larger product?

• Does the implementation take special advantage of the limited nature of TPC benchmarks (e.g., transaction
profile, transaction mix, transaction concurrency and/or contention, transaction isolation) in a manner that
would not be generally applicable to the environment the benchmark represents?

• Is the use of the implementation discouraged by the vendor? (This includes failing to promote the
implementation in a manner similar to other products and technologies.)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 8 of 130

• Does the implementation require uncommon sophistication on the part of the end-user, programmer, or
system administrator?

• Is the pricing unusual or non-customary for the vendor or unusual or non-customary to normal business
practices? The following pricing practices are suspect:

- Availability of a discount to a small subset of possible customers.

- Discounts documented in an unusual or non-customary manner.

- Discounts that exceeds 25% on small quantities and 50% on large quantities.

- Pricing featured as a close-out or one-time special.

- Unusual or non-customary restrictions on transferability of product, warranty or maintenance on
discounted items.

• Is the implementation being used (including beta) or purchased by end-users in the market area the
benchmark represents? How many? Multiple sites? If the implementation is not currently being used by
end-users, is there any evidence to indicate that it will be used by a significant number of users?

0.3 General Measurement Guidelines

TPC benchmark results are expected to be accurate representations of system performance. Therefore, there are
certain guidelines which are expected to be followed when measuring those results. The approach or methodology
is explicitly outlined in or described in the specification.

• The approach is an accepted is an accepted engineering practice or standard.

• The approach does not enhance the result.

• Equipment used in measuring results is calibrated according to established quality standards.

• Fidelity and candor is maintained in reporting any anomalies in the results, even if not specified in the
benchmark requirements.

The use of new methodologies and approaches is encouraged so long as they meet the requirements above.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 9 of 130

Clause 1: LOGICAL DATABASE DESIGN

1.1 Business and Application Environment

TPC Benchmark™ C is comprised of a set of basic operations designed to exercise system functionalities in a
manner representative of complex OLTP application environments. These basic operations have been given a life-
like context, portraying the activity of a wholesale supplier, to help users relate intuitively to the components of the
benchmark. The workload is centered around the activity of processing orders and provides a logical database
design, which can be distributed without structural changes to transactions.

TPC-C does not represent the activity of any particular business segment, but rather any industry which must
manage, sell, or distribute a product or service (e.g., car rental, food distribution, parts supplier, etc.). TPC-C does not
attempt to be a model of how to build an actual application.

The purpose of a benchmark is to reduce the diversity of operations found in a production application, while
retaining the application's essential performance characteristics, namely: the level of system utilization and the
complexity of operations. A large number of functions have to be performed to manage a production order entry
system. Many of these functions are not of primary interest for performance analysis, since they are proportionally
small in terms of system resource utilization or in terms of frequency of execution. Although these functions are vital
for a production system, they merely create excessive diversity in the context of a standard benchmark and have
been omitted in TPC-C.

The Company portrayed by the benchmark is a wholesale supplier with a number of geographically distributed
sales districts and associated warehouses. As the Company's business expands, new warehouses and associated
sales districts are created. Each regional warehouse covers 10 districts. Each district serves 3,000 customers. All
warehouses maintain stocks for the 100,000 items sold by the Company. The following diagram illustrates the
warehouse, district, and customer hierarchy of TPC-C's business environment.

Customers

Company

Warehouse-1

District-10

Warehouse-W

District-1 District-2

3k1 2 30k

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 10 of 130

Customers call the Company to place a new order or request the status of an existing order. Orders are composed of
an average of 10 order lines (i.e., line items). One percent of all order lines are for items not in-stock at the regional
warehouse and must be supplied by another warehouse.

The Company's system is also used to enter payments from customers, process orders for delivery, and examine
stock levels to identify potential supply shortages.

1.2 Database Entities, Relationships, and Characteristics

1.2.1 The components of the TPC-C database are defined to consist of nine separate and individual tables.
The relationships among these tables are defined in the entity-relationship diagram shown below and are subject to
the rules specified in Clause 1.4.

Warehouse District

History

Customer
New-Order

OrderOrder-LineItem

Stock

W W*10

3k

1+

W*30k

W*30k+5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

Legend:

• All numbers shown illustrate the database population requirements (see Clause 4.3).

• The numbers in the entity blocks represent the cardinality of the tables (number of rows). These numbers are
factored by W, the number of Warehouses, to illustrate the database scaling. (see Clause 4).

• The numbers next to the relationship arrows represent the cardinality of the relationships (average number of
children per parent).

• The plus (+) symbol is used after the cardinality of a relationship or table to illustrate that this number is
subject to small variations in the initial database population over the measurement interval (see Clause 5.5)
as rows are added or deleted.

1.3 Table Layouts

1.3.1 The following list defines the minimal structure (list of attributes) of each table where:

• N unique IDs means that the attribute must be able to hold any one ID within a minimum set of N unique
IDs, regardless of the physical representation (e.g., binary, packed decimal, alphabetic, etc.) of the attribute.

• variable text, size N means that the attribute must be able to hold any string of characters of a variable length
with a maximum length of N. If the attribute is stored as a fixed length string and the string it holds is shorter
than N characters, it must be padded with spaces.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 11 of 130

• fixed text, size N means that the attribute must be able to hold any string of characters of a fixed length of N.

• date and time means that the attribute must be able to hold any date between 1st January 1900 and 31st
December 2100 with a resolution of at least one second.

• numeric, N digits means that the attribute must be able to hold any N decimal digits value. Numeric fields
that contain monetary values (W_YTD, D_YTD, C_CREDIT_LIM, C_BALANCE, C_YTD_PAYMENT,
H_AMOUNT, OL_AMOUNT, I_PRICE) must use data types that give exact representation to at least the
smallest monetary unit in the currency being used in the benchmark implemented. For example,
C_BALANCE in U.S. dollars may be represented as (12,2) digit signed decimal (with implicit scaling), or
scaled to cents in a signed integer of at least 41 bits, or scaled to cents in a double precision (64 bit) REAL.

• null means out of the range of valid values for a given attribute and always the same value for that attribute.

Comment 1: For each table, the following list of attributes can be implemented in any order, using any physical
representation available from the tested system.

Comment 2: Table and attribute names are used for illustration purposes only; different names may be used by the
implementation.

 WAREHOUSE Table Layout

Field Name Field Definition Comments

W_ID 2*W unique IDs W Warehouses are populated

W_NAME variable text, size 10

W_STREET_1 variable text, size 20

W_STREET_2 variable text, size 20

W_CITY variable text, size 20

W_STATE fixed text, size 2

W_ZIP fixed text, size 9

W_TAX numeric, 4 digits Sales tax

W_YTD numeric, 12 digits Year to date balance

Primary Key: W_ID

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 12 of 130

 DISTRICT Table Layout

Field Name Field Definition Comments

D_ID 20 unique IDs 10 are populated per warehouse

D_W_ID 2*W unique IDs

D_NAME variable text, size 10

D_STREET_1 variable text, size 20

D_STREET_2 variable text, size 20

D_CITY variable text, size 20

D_STATE fixed text, size 2

D_ZIP fixed text, size 9

D_TAX numeric, 4 digits Sales tax

D_YTD numeric, 12 digits Year to date balance

D_NEXT_O_ID 10,000,000 unique IDs Next available Order number

Primary Key: (D_W_ID, D_ID)

D_W_ID Foreign Key, references W_ID

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 13 of 130

 CUSTOMER Table Layout

Field Name Field Definition Comments

C_ID 96,000 unique IDs 3,000 are populated per district

C_D_ID 20 unique IDs

C_W_ID 2*W unique IDs

C_FIRST variable text, size 16

C_MIDDLE fixed text, size 2

C_LAST variable text, size 16

C_STREET_1 variable text, size 20

C_STREET_2 variable text, size 20

C_CITY variable text, size 20

C_STATE fixed text, size 2

C_ZIP fixed text, size 9

C_PHONE fixed text, size 16

C_SINCE date and time

C_CREDIT fixed text, size 2 "GC"=good, "BC"=bad

C_CREDIT_LIM numeric, 12 digits

C_DISCOUNT numeric, 4 digits

C_BALANCE signed numeric, 12 digits

C_YTD_PAYMENT numeric, 12 digits

C_PAYMENT_CNT numeric , 4 digits

C_DELIVERY_CNT numeric, 4 digits

C_DATA variable text, size 500 Miscellaneous information

Primary Key: (C_W_ID, C_D_ID, C_ID)

(C_W_ID, C_D_ID) Foreign Key, references (D_W_ID, D_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 14 of 130

 HISTORY Table Layout

Field Name Field Definition Comments

H_C_ID 96,000 unique IDs

H_C_D_ID 20 unique IDs

H_C_W_ID 2*W unique IDs

H_D_ID 20 unique IDs

H_W_ID 2*W unique IDs

H_DATE date and time

H_AMOUNT numeric, 6 digits

H_DATA variable text, size 24 Miscellaneous information

Primary Key: none

(H_C_W_ID, H_C_D_ID, H_C_ID) Foreign Key, references (C_W_ID, C_D_ID, C_ID)

(H_W_ID, H_D_ID) Foreign Key, references (D_W_ID, D_ID)

Comment: Rows in the History table do not have a primary key as, within the context of the
benchmark, there is no need to uniquely identify a row within this table.

Note: The TPC-C application does not have to be capable of utilizing the increased range of C_ID
values beyond 6,000.

 NEW-ORDER Table Layout

Field Name

Field Definition Comments

NO_O_ID 10,000,000 unique IDs

NO_D_ID 20 unique IDs

NO_W_ID 2*W unique IDs

Primary Key: (NO_W_ID, NO_D_ID, NO_O_ID)

(NO_W_ID, NO_D_ID, NO_O_ID) Foreign Key, references (O_W_ID, O_D_ID, O_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 15 of 130

 ORDER Table Layout

Field Name Field Definition Comments

O_ID 10,000,000 unique IDs

O_D_ID 20 unique IDs

O_W_ID 2*W unique IDs

O_C_ID 96,000 unique IDs

O_ENTRY_D date and time

O_CARRIER_ID 10 unique IDs, or null

O_OL_CNT from 5 to 15 Count of Order-Lines

O_ALL_LOCAL numeric, 1 digit

Primary Key: (O_W_ID, O_D_ID, O_ID)

(O_W_ID, O_D_ID, O_C_ID) Foreign Key, references (C_W_ID, C_D_ID, C_ID)

 ORDER-LINE Table Layout

Field Name Field Definition Comments

OL_O_ID 10,000,000 unique IDs

OL_D_ID 20 unique IDs

OL_W_ID 2*W unique IDs

OL_NUMBER 15 unique IDs

OL_I_ID 200,000 unique IDs

OL_SUPPLY_W_ID 2*W unique IDs

OL_DELIVERY_D date and time, or null

OL_QUANTITY numeric, 2 digits

OL_AMOUNT numeric, 6 digits

OL_DIST_INFO fixed text, size 24

Primary Key: (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER)

(OL_W_ID, OL_D_ID, OL_O_ID) Foreign Key, references (O_W_ID, O_D_ID, O_ID)

(OL_SUPPLY_W_ID, OL_I_ID) Foreign Key, references (S_W_ID, S_I_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 16 of 130

 ITEM Table Layout

Field Name Field Definition Comments

I_ID 200,000 unique IDs 100,000 items are populated

I_IM_ID 200,000 unique IDs Image ID associated to Item

I_NAME variable text, size 24

I_PRICE numeric, 5 digits

I_DATA variable text, size 50 Brand information

Primary Key: I_ID

 STOCK Table Layout

Field Name Field Definition Comments

S_I_ID 200,000 unique IDs 100,000 populated per warehouse

S_W_ID 2*W unique IDs

S_QUANTITY numeric, 4 digits

S_DIST_01 fixed text, size 24

S_DIST_02 fixed text, size 24

S_DIST_03 fixed text, size 24

S_DIST_04 fixed text, size 24

S_DIST_05 fixed text, size 24

S_DIST_06 fixed text, size 24

S_DIST_07 fixed text, size 24

S_DIST_08 fixed text, size 24

S_DIST_09 fixed text, size 24

S_DIST_10 fixed text, size 24

S_YTD numeric, 8 digits

S_ORDER_CNT numeric, 4 digits

S_REMOTE_CNT numeric, 4 digits

S_DATA variable text, size 50 Make information

Primary Key: (S_W_ID, S_I_ID)

S_W_ID Foreign Key, references W_ID

S_I_ID Foreign Key, references I_ID

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 17 of 130

1.4 Implementation Rules

1.4.1 The physical clustering of records within the database is allowed.

1.4.2 A view which represents the rows to avoid logical read/writes is excluded.

Comment: The intent of this clause is to insure that the application implements the number of logical operations
defined in the transaction profiles without combining several operations in one, via the use of a view.

1.4.3 All tables must have the properly scaled number of rows as defined by the database population
requirements (see Clause 4.3).

1.4.4 Horizontal partitioning of tables is allowed. Groups of rows from a table may be assigned to different
files, disks, or areas. If implemented, the details of such partitioning must be disclosed.

1.4.5 Vertical partitioning of tables is allowed. Groups of attributes (columns) of one table may be assigned
to files, disks, or areas different from those storing the other attributes of that table. If implemented, the details of
such partitioning must be disclosed (see Clause 1.4.9 for limitations).

Comment: in the two clauses above (1.4.4 and 1.4.5) assignment of data to different files, disks, or areas not based on
knowledge of the logical structure of the data (e.g., knowledge of row or attribute boundaries) is not considered
partitioning. For example, distribution or stripping over multiple disks of a physical file which stores one or more
logical tables is not considered partitioning as long as this distribution is done by the hardware or the operating
system without knowledge of the logical structure stored in the physical file.

1.4.6 Replication is allowed for all tables. All copies of tables which are replicated must meet all
requirements for atomicity, consistency, and isolation as defined in Clause 3. If implemented, the details of such
replication must be disclosed.

Comment: Only one copy of a replicated table needs to meet the durability requirements defined in Clause 3.

1.4.7 Attributes may be added and/or duplicated from one table to another as long as these changes do not
improve performance.

1.4.8 Each attribute, as described in Clause 1.3.1, must be logically discrete and independently accessible
by the data manager. For example, W_STREET_1 and W_STREET_2 cannot be implemented as two sub-parts of a
discrete attribute W_STREET.

1.4.9 Each attribute, as described in Clause 1.3.1, must be accessible by the data manager as a single
attribute. For example, S_DATA cannot be implemented as two discrete attributes S_DATA_1 and S_DATA_2. The
following attributes are exceptions to this clause. No vertical partitioning can be defined between the two attributes
used to implement these exceptions.

• All attributes holding a time-and-date value (i.e., C_SINCE, H_DATE, O_ENTRY_D, and OL_DELIVERY_D)
can be implemented as a combination of two attributes: a date attribute and a time attribute.

• The attribute C_DATA can be implemented as two distinct attributes of equal size and using the same
datatype.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 18 of 130

1.4.10 The primary key of each table must not directly represent the physical disk addresses of the row or
any offsets thereof. The application may not reference rows using relative addressing since they are simply offsets
from the beginning of the storage space. This does not preclude hashing schemes or other file organizations which
have provisions for adding, deleting, and modifying records in the ordinary course of processing. Exception: The
History table can use relative addressing but all other requirements apply.

Comment 1 : It is the intent of this clause that the application program (see Clause 2.1.7) executing the transaction, or
submitting the transaction request, not use physical identifiers, but logical identifiers for all accesses, and contain
no user written code which translates or aids in the translation of a logical key to the location within the table of the
associated row or rows. For example, it is not legitimate for the application to build a "translation table" of logical-to-
physical addresses and use it to enhance performance.

Comment 2: Internal record or row identifiers, for example, Tuple IDs or cursors, may be used under the following
conditions:

1. For each transaction executed, initial access to any row must be via the key(s) specified in the transaction
profile and no other attributes. Initial access includes insertion, deletion, retrieval, and update of any
row.

2. Clause 1.4.10 may not be violated.

1.4.11 While inserts and deletes are not performed on all tables, the system must not be configured to take
special advantage of this fact during the test. Although inserts are inherently limited by the storage space available
on the configured system, there must be no restriction on inserting in any of the tables a minimum number of rows
equal to 5% of the table cardinality and with a key value of at least double the range of key values present in that
table.

Comment: It is required that the space for the additional 5% table cardinality be configured for the test run and
priced (as static space per Clause 4.2.3) accordingly. For systems where space is configured and dynamically
allocated at a later time, this space must be considered as allocated and included as static space when priced.

1.4.12 The minimum decimal precision for any computation performed as part of the application program
must be the maximum decimal precision of all the individual items in that calculation.

1.4.13 Any other rules specified elsewhere in this document apply to the implementation (e.g., the
consistency rules in Clause 3.3).

1.5 Integrity Rules

1.5.1 In any committed state, the primary key values must be unique within each table. For example, in the
case of a horizontally partitioned table, primary key values of rows across all partitions must be unique.

1.5.2 In any committed state, no ill-formed rows may exist in the database. An ill-formed row occurs when
the value of any attributes cannot be determined. For example, in the case of a vertically partitioned table, a row
must exist in all the partitions.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 19 of 130

1.6 Data Access Transparency Requirements

Data Access Transparency is the property of the system which removes from the application program any
knowledge of the location and access mechanisms of partitioned data. An implementation which uses vertical
and/or horizontal partitioning must meet the requirements for transparent data access described here.

No finite series of test can prove that the system supports complete data access transparency. The requirements
below describe the minimum capabilities needed to establish that the system provides transparent data access.

Comment: The intent of this clause is to require that access to physically and/or logically partitioned data be
provided directly and transparently by services implemented by commercially available layers below the
application program such as the data/file manager (DBMS), the operating system, the hardware, or any
combination of these.

1.6.1 Each of the nine tables described in Clause 1.3 must be identifiable by names which have no
relationship to the partitioning of tables. All data manipulation operations in the application program (see Clause
2.1.7) must use only these names.

1.6.2 The system must prevent any data manipulation operation performed using the names described in
Clause 1.6.1 which would result in a violation of the integrity rules (see Clause 1.5). For example: the system must
prevent a non-TPC-C application from committing the insertion of a row in a vertically partitioned table unless all
partitions of that row have been inserted.

1.6.3 Using the names which satisfy Clause 1.6.1, any arbitrary non-TPC-C application must be able to
manipulate any set of rows or columns:

• Identifiable by any arbitrary condition supported by the underlying DBMS

• Using the names described in Clause 1.6.1 and using the same data manipulation semantics and syntax for
all tables.

For example, the semantics and syntax used to update an arbitrary set of rows in any one table must also be usable
when updating another arbitrary set of rows in any other table.

Comment: The intent is that the TPC-C application program uses general purpose mechanisms to manipulate data
in the database.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 20 of 130

Clause 2: TRANSACTION and TERMINAL PROFILES

2.1 Definition of Terms

2.1.1 The term select as used in this specification refers to the action of identifying (e.g., referencing,
pointing to) a row (or rows) in the database without requiring retrieval of the actual content of the identified row(s).

2.1.2 The term retrieve as used in this specification refers to the action of accessing (i.e., fetching) the value
of an attribute from the database and passing this value to the application program.

Note: Fields that correspond to database attributes are in UPPERCASE. Other fields, such as fields used by the SUT,
or the RTE, for computations, or communication with the terminal, but not stored in the database, are in lowercase
italics.

2.1.3 The term database transaction as used is this specification refers to a unit of work on the database
with full ACID properties as described in Clause 3. A business transaction is comprised of one or more database
transactions. When used alone, the term transaction refers to a business transaction.

2.1.4 The term [x .. y] represents a closed range of values starting with x and ending with y.

2.1.5 The term randomly selected within [x .. y] means independently selected at random and uniformly
distributed between x and y, inclusively, with a mean of (x+y)/2, and with the same number of digits of precision as
shown. For example, [0.01 .. 100.00] has 10,000 unique values, whereas [1 ..100] has only 100 unique values.

2.1.6 The term non-uniform random, used only for generating customer numbers, customer last names,
and item numbers, means an independently selected and non-uniformly distributed random number over the
specified range of values [x .. y]. This number must be generated by using the function NURand which produces
positions within the range [x .. y]. The results of NURand might have to be converted to produce a name or a number
valid for the implementation.

 NURand(A, x, y) = (((random(0, A) | random(x, y)) + C) % (y - x + 1)) + x

where:

 exp-1 | exp-2 stands for the bitwise logical OR operation between exp-1 and exp-2

 exp-1 % exp-2 stands for exp-1 modulo exp-2

 random(x, y) stands for randomly selected within [x .. y]

 A is a constant chosen according to the size of the range [x .. y]
 for C_LAST, the range is [0 .. 999] and A = 255
 for C_ID, the range is [1 .. 3000] and A = 1023
 for OL_I_ID, the range is [1 .. 100000] and A = 8191

 C is a run-time constant randomly chosen within [0 .. A] that can be varied without altering performance.
The same C value, per field (C_LAST, C_ID, and OL_I_ID), must be used by all emulated terminals.

2.1.6.1 In order that the value of C used for C_LAST does not alter performance the following must be true:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 21 of 130

 Let C-Load be the value of C used to generate C_LAST when populating the database. C-Load is a value
in the range of [0..255] including 0 and 255.

 Let C-Run be the value of C used to generate C_LAST for the measurement run.

 Let C-Delta be the absolute value of the difference between C-Load and C-Run. C-Delta must be a value in
the range of [65..119] including the values of 65 and 119 and excluding the value of 96 and 112.

2.1.7 The term application program refers to code that is not part of the commercially available components
of the system, but produced specifically to implement the transaction profiles (see Clauses 2.4.2, 2.5.2, 2.6.2, 2.7.4,
and 2.8.2) of this benchmark. For example, stored procedures, triggers, and referential integrity constraints are
considered part of the application program when used to implement any portion of the transaction profiles, but are
not considered part of the application program when solely used to enforce integrity rules (see Clause 1.5) or
transparency requirements (see Clause 1.6) independently of any transaction profile.

2.1.8 The term terminal as used in this specification refers to the interface device capable of entering and
displaying characters from and to a user with a minimum display of 24x80. A terminal is defined as the
components that facilitate end-user input and the display of the output as defined in Clause 2. The terminal may
not contain any knowledge of the application except field format, type, and position.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 22 of 130

2.2 General Requirements for Terminal I/O

2.2.1 Input/Output Screen Definitions

2.2.1.1 The layout (position on the screen and size of titles and fields) of the input/output screens, as defined
in Clauses 2.4.3.1, 2.5.3.1, 2.6.3.1, 2.7.3.1, and 2.8.3.1, must be reproduced by the test sponsor as closely as possible
given the features and limitations of the implemented system. Any deviation from the input/output screens must be
explained.

2.2.1.2 Input/output screens may be altered to circumvent limitations of the implementation providing that
no performance advantage is gained. However, the following rules apply:

1. Titles can be translated into any language.

2. The semantic content cannot be altered.

3. The number of individual fields cannot be altered.

4. The number of characters within the fields (i.e., field width) cannot be decreased.

5. Reordering or repositioning of fields is allowed.

6. A copy of the new screen specifications and layout must be included in the Full Disclosure Report.

2.2.1.3 The amount and price fields defined in Clause 2 are formatted for U.S. currency. These formats can be
modified to satisfy different currency representation (e.g., use another currency sign, move the decimal point
retaining at least one digit on its right).

2.2.1.4 For input/output screens with unused fields (or groups of fields), it is not required to enter or display
these fields. For example, when an order has less than 15 items, the groups of fields corresponding to the remaining
items on the input/output screen are unused and need not be entered or displayed after being cleared. Similarly,
when selecting a customer using its last name, the customer number field is unused and need not be entered or
displayed after being cleared.

2.2.1.5 All input and output fields that may change must be cleared at the beginning of each transaction even
when the same transaction type is consecutively selected by a given terminal. Fields should be cleared by displaying
them as spaces or zeros.

Comment: In Clauses 2.2.1.4 and 2.2.1.5, if the test sponsor does not promote using space or zero as a clear character
for its implementation, other clear characters can be used as long as a given field always uses the same clear
character.

2.2.1.6 A menu is used to select the next transaction type. The menu, consisting of one or more lines, must be
displayed at the very top or at the very bottom of the input/output screen. If an input field is needed to enter the
menu selection, it must be located on the line(s) reserved for the menu.

Comment: The menu is in addition to the screen formats defined in the terminal I/O Clause for each transaction
type.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 23 of 130

2.2.1.7 The menu must display explicit text (i.e., it must contain the full name of each transaction and the
action to be taken by the user to select each transaction). A minimum of 60 characters (excluding spaces) must be
displayed on the menu.

2.2.1.8 Any input and output field(s), other than the mandatory fields specified in the input/output screens
as defined in Clauses 2.4.3.1, 2.5.3.1, 2.6.3.1, 2.7.3.1, and 2.8.3.1, must be disclosed, and the purpose of such field(s)
explained.

2.2.2 Entering and Displaying Fields

2.2.2.1 A field is said to be entered once all the significant characters that compose the input data for that
field have been communicated to the SUT by the emulated terminal.

2.2.2.2 A field is said to be displayed once all significant characters that compose the data for that field have
been communicated by the SUT to the emulated terminal for display.

2.2.2.3 Communicating input and output data does not require transferring any specific number of bytes.
Methods for optimizing this communication, such as message compression and data caching, are allowed.

2.2.2.4 The following features must be provided to the emulated user:

1. The input characters appear on the input/output screen (i.e., are echoed) as they are keyed in. This
requirement can be satisfied by visual inspection at full load where there are no perceivable delays.
Otherwise, it is required that the character echoing be verified by actual measurements. For example, that can
be done using a protocol analyzer, RTE measurement, etc. to show that the echo response time is less than 1
second. If local echo or block mode devices are used then verification is not required.

Comment: A web browser implementation, or a terminal or PC emulating a terminal in either local echo or block
mode, will meet the echo response time requirement of one second, so there is no need for an echo test.

2. Input is allowed only in the positions of an input field (i.e., output-only fields, labels, and blanks spaces on
the input/output screen are protected from input).

3. Input-capable fields are designated by some method of clearly identifying them (e.g., highlighted areas,
underscores, reverse video, column dividers, etc.).

4. It must be possible to key in only significant characters into fields. For alphanumeric fields, non-keyed
positions must be translated to blanks or nulls. For numeric fields, keyed input of less than the maximum
allowable digits must be presented right justified on the output screen.

5. All fields for which a value is necessary to allow the application to complete are required to contain input
prior to the start of the measurement of the transaction RT, or the application must contain a set of error-
handling routines to inform the user that required fields have not been entered.

6. Fields can be keyed and re-keyed in any order. Specifically:

• The emulated user must be able to move the input cursor forward and backward directly to the input
capable fields.

• The application cannot rely on fields being entered in any particular order.

• The user can return to a field that has been keyed in and change its value prior to the start of the
measurement of the transaction RT.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 24 of 130

7. Numeric fields must be protected from non-numeric input. If one or more non-numeric characters is entered
in a numeric field, a data entry error must be signaled to the user.

 Comment: Input validation may either be performed by the terminal, by the application, or a combination of
both. Input validation required by Item 5 and Item 7 must occur prior to starting a database transaction.
Specifically, invalid data entry may not result in a rolled back transaction.

2.2.2.5 All output fields that display values that are updated in the database by the current business
transaction must display the "new" (i.e., committed) values for those fields.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 25 of 130

2.3 General Requirements for Transaction Profiles

Each transaction must be implemented according to the specified transaction profiles. In addition:

2.3.1 The order of the data manipulations within the transaction bounds is immaterial (unless otherwise
specified, see Clause 2.4.2.3), and is left to the latitude of the test sponsor, as long as the implemented transactions
are functionally equivalent to those specified in the transaction profiles.

2.3.2 The transaction profiles specify minimal data retrieval and update requirements for the transactions.
Additional navigational steps or data manipulation operations implemented within the database transactions must
be disclosed, and the purpose of such addition(s) must be explained.

2.3.3 Each attribute must be obtained from the designated table in the transaction profiles.

Comment: The intent of this clause is to prevent reducing the number of logical database operations required to
implement each transaction.

2.3.4 No data manipulation operation from the transaction profile can be performed before all input data
have been communicated to the SUT, or after any output data have been communicated by the SUT to the emulated
terminal.

Comment: The intent of this clause is to ensure that, for a given business transaction, no data manipulation
operation from the transaction profile is performed prior to the timestamp taken at the beginning of the Transaction
RT or after the timestamp taken at the end of the Transaction RT (see Clause 5.3). For example, in the New-Order
transaction the SUT is not allowed to fetch the matching row from the CUSTOMER table until all input data have
been communicated to the SUT, even if this row is fetched again later during the execution of that same transaction.

2.3.5 If transactions are routed or organized within the SUT, a commercially available transaction
processing monitor or equivalent commercially available software (hereinafter referred to as TM) is required with the
following features/functionality:

Operation - The TM must allow for:

• request/service prioritization

• multiplexing/de multiplexing of requests/services

• automatic load balancing

• reception, queuing, and execution of multiple requests/services concurrently

Security - The TM must allow for:

• the ability to validate and authorize execution of each service at the time the service is requested.

• the restriction of administrative functions to authorized users.

Administration/Maintenance - The TM must have the predefined capability to perform centralized, non
programmatic (i.e., must be implemented in the standard product and not require programming) and
dynamic configuration management of TM resources including hardware, network, services (single or
group), queue management prioritization rules, etc.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 26 of 130

Recovery - The TM must have the capability to:

• post error codes to an application.

• detect and terminate long-running transactions based on predefined time-out intervals.

Application Transparency - The message context(s) that exist between the client and server application
programs must be managed solely by the TM. The client and server application programs must not have any
knowledge of the message context or the underlying communication mechanisms that support that context.

Comment 1: The following are examples of implementations that are non-compliant with the Application
Transparency requirement.

1. Client and server application programs use the same identifier (e.g., handle or pointer) to maintain the
message context for multiple transactions.

2. Change and/or recompilation of the client and/or server application programs is required when the
number of queues or equivalent data structures used by the TM to maintain the message context between
the client and server application programs is changed by TM administration.

Comment 2: The intent of this clause is to encourage the use of general purpose, commercially available transaction
monitors, and to exclude special purpose software developed for benchmarking or other limited use. It is recognized
that implementations of features and functionality described above vary across vendors' architectures. Such
differences do not preclude compliance with the requirements of this clause.

Comment 3: Functionality of TM or equivalent software is not required if the DBMS maintains an individual
context for each emulated user.

2.3.6 Any error that would result in an invalid TPC-C transaction must be detected and reported. An
invalid TPC-C transaction includes transactions that, if committed, would violate the level of
database consistency defined in Clause 3.3. These transactions must be rolled back. The detection of
these invalid transactions must be reported to the user as part of the output screen or, in the case of
the deferred portion of the delivery transaction, the delivery log.

Comment 1: Some examples of the types of errors which could result in an invalid transaction are:

?? Select or update of a non-existent record

?? Failure on insert of a new record

?? Failure to delete an existing record

?? Failure on select or update of an existing record

Comment 2: The exact information reported when an error occurs is implementation specific and not defined
beyond the requirement that an error be reported.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 27 of 130

2.4 The New-Order Transaction

The New-Order business transaction consists of entering a complete order through a single database transaction. It
represents a mid-weight, read-write transaction with a high frequency of execution and stringent response time
requirements to satisfy on-line users. This transaction is the backbone of the workload. It is designed to place a
variable load on the system to reflect on-line database activity as typically found in production environments.

2.4.1 Input Data Generation

2.4.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement
interval (see Clause 5.5).

2.4.1.2 The district number (D_ID) is randomly selected within [1 .. 10] from the home warehouse (D_W_ID =
W_ID). The non-uniform random customer number (C_ID) is selected using the NURand(1023,1,3000) function
from the selected district number (C_D_ID = D_ID) and the home warehouse number (C_W_ID = W_ID).

2.4.1.3 The number of items in the order (ol_cnt) is randomly selected within [5 .. 15] (an average of 10). This
field is not entered. It is generated by the terminal emulator to determine the size of the order. O_OL_CNT is later
displayed after being computed by the SUT.

2.4.1.4 A fixed 1% of the New-Order transactions are chosen at random to simulate user data entry errors
and exercise the performance of rolling back update transactions. This must be implemented by generating a
random number rbk within [1 .. 100].

Comment: All New-Order transactions must have independently generated input data. The input data from a rolled
back transaction cannot be used for a subsequent transaction.

2.4.1.5 For each of the ol_cnt items on the order:

1. A non-uniform random item number (OL_I_ID) is selected using the NURand(8191,1,100000) function. If
this is the last item on the order and rbk = 1 (see Clause 2.4.1.4), then the item number is set to an unused
value.

 Comment: An unused value for an item number is a value not found in the database such that its use will
produce a "not-found" condition within the application program. This condition should result in rolling
back the current database transaction.

2. A supplying warehouse number (OL_SUPPLY_W_ID) is selected as the home warehouse 99% of the time
and as a remote warehouse 1% of the time. This can be implemented by generating a random number x
within [1 .. 100];

 - If x > 1, the item is supplied from the home warehouse (OL_SUPPLY_W_ID = W_ID).

 - If x = 1, the item is supplied from a remote warehouse (OL_SUPPLY_W_ID is randomly selected within
the range of active warehouses (see Clause 4.2.2) other than W_ID).

 Comment 1: With an average of 10 items per order, approximately 90% of all orders can be supplied in full
by stocks from the home warehouse.

 Comment 2: If the system is configured for a single warehouse, then all items are supplied from that single
home warehouse.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 28 of 130

3. A quantity (OL_QUANTITY) is randomly selected within [1 .. 10].

2.4.1.6 The order entry date (O_ENTRY_D) is generated within the SUT by using the current system date and
time.

2.4.1.7 An order-line is said to be home if it is supplied by the home warehouse (i.e., when
OL_SUPPLY_W_ID equals O_W_ID).

2.4.1.8 An order-line is said to be remote when it is supplied by a remote warehouse (i.e., when
OL_SUPPLY_W_ID does not equal O_W_ID).

2.4.2 Transaction Profile

2.4.2.1 Entering a new order is done in a single database transaction with the following steps:

1. Create an order header, comprised of:

 2 row selections with data retrieval,

 1 row selection with data retrieval and update,

 2 row insertions.

2. Order a variable number of items (average ol_cnt = 10), comprised of:

 (1 * ol_cnt) row selections with data retrieval,

 (1 * ol_cnt) row selections with data retrieval and update,

 (1 * ol_cnt) row insertions.

Note: The above summary is provided for information only. The actual requirement is defined by the detailed
transaction profile below.

2.4.2.2 For a given warehouse number (W_ID), district number (D_W_ID , D_ID), customer number (C_W_ID
, C_D_ID , C_ ID), count of items (ol_cnt, not communicated to the SUT), and for a given set of items (OL_I_ID),
supplying warehouses (OL_SUPPLY_W_ID), and quantities (OL_QUANTITY):

• The input data (see Clause 2.4.3.2) are communicated to the SUT.

• A database transaction is started.

• The row in the WAREHOUSE table with matching W_ID is selected and W_TAX, the warehouse tax rate, is
retrieved.

• The row in the DISTRICT table with matching D_W_ID and D_ ID is selected, D_TAX, the district tax rate, is
retrieved, and D_NEXT_O_ID, the next available order number for the district, is retrieved and incremented
by one.

• The row in the CUSTOMER table with matching C_W_ID, C_D_ID, and C_ID is selected and C_DISCOUNT,
the customer's discount rate, C_LAST, the customer's last name, and C_CREDIT, the customer's credit status,
are retrieved.

• A new row is inserted into both the NEW-ORDER table and the ORDER table to reflect the creation of the
new order. O_CARRIER_ID is set to a null value. If the order includes only home order-lines, then
O_ALL_LOCAL is set to 1, otherwise O_ALL_LOCAL is set to 0.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 29 of 130

• The number of items, O_OL_CNT, is computed to match ol_cnt.

• For each O_OL_CNT item on the order:

- The row in the ITEM table with matching I_ID (equals OL_I_ID) is selected and I_PRICE, the price of the
item, I_NAME, the name of the item, and I_DATA are retrieved. If I_ID has an unused value (see Clause
2.4.1.5), a "not-found" condition is signaled, resulting in a rollback of the database transaction (see Clause
2.4.2.3).

- The row in the STOCK table with matching S_I_ID (equals OL_I_ID) and S_W_ID (equals
OL_SUPPLY_W_ID) is selected. S_QUANTITY, the quantity in stock, S_DIST_xx, where xx represents the
district number, and S_DATA are retrieved. If the retrieved value for S_QUANTITY exceeds
OL_QUANTITY by 10 or more, then S_QUANTITY is decreased by OL_QUANTITY; otherwise
S_QUANTITY is updated to (S_QUANTITY - OL_QUANTITY)+91. S_YTD is increased by
OL_QUANTITY and S_ORDER_CNT is incremented by 1. If the order-line is remote, then
S_REMOTE_CNT is incremented by 1.

- The amount for the item in the order (OL_AMOUNT) is computed as:

 OL_QUANTITY * I_PRICE

- The strings in I_DATA and S_DATA are examined. If they both include the string "ORIGINAL", the brand-
generic field for that item is set to "B", otherwise, the brand-generic field is set to "G".

- A new row is inserted into the ORDER-LINE table to reflect the item on the order. OL_DELIVERY_D is set
to a null value, OL_NUMBER is set to a unique value within all the ORDER-LINE rows that have the
same OL_O_ID value, and OL_DIST_INFO is set to the content of S_DIST_xx, where xx represents the
district number (OL_D_ID)

• The total-amount for the complete order is computed as:

 sum(OL_AMOUNT) * (1 - C_DISCOUNT) * (1 + W_TAX + D_TAX)

• The database transaction is committed, unless it has been rolled back as a result of an unused value for the
last item number (see Clause 2.4.1.5).

• The output data (see Clause 2.4.3.3) are communicated to the terminal.

2.4.2.3 For transactions that rollback as a result of an unused item number, the complete transaction profile
must be executed with the exception that the following steps need not be done:

• Selecting and retrieving the row in the STOCK table with S_I_ID matching the unused item number.

• Examining the strings I_DATA and S_DATA for the unused item.

• Inserting a new row into the ORDER-LINE table for the unused item.

• Adding the amount for the unused item to the sum of all OL_AMOUNT.

The transaction is not committed. Instead, the transaction is rolled back.

Comment 1: The intent of this clause is to ensure that within the New-Order transaction all valid items are
processed prior to processing the unused item. Knowledge that an item is unused, resulting in rolling back the
transaction, can only be used to skip execution of the above steps. No other optimization can result from this
knowledge (e.g., skipping other steps, changing the execution of other steps, using a different type of transaction,
etc.).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 30 of 130

Comment 2: This clause is an exception to Clause 2.3.1. The order of data manipulations prior to signaling a "not
found" condition is immaterial.

2.4.3 Terminal I/O

2.4.3.1 For each transaction the originating terminal must display the following input/output screen with all
input and output fields cleared (with either spaces or zeros) except for the Warehouse field which has not changed
and must display the fixed W_ID value associated with that terminal.

 New Order
Warehouse: 9999 District: 99 Date: DD-MM-YYYY hh:mm:ss
Customer: 9999 Name: XXXXXXXXXXXXXXXX Credit: XX %Disc: 99.99
Order Number: 99999999 Number of Lines: 99 W_tax: 99.99 D_tax: 99.99

 Supp_W Item_Id Item Name Qty Stock B/G Price Amount
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
Execution Status: XXXXXXXXXXXXXXXXXXXXXXXX Total: $99999.99

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2.4.3.2 The emulated user must enter, in the appropriate fields of the input/output screen, the required input
data which is divided in two groups and organized as follows:

• Two fields: D_ID and C_ID.

 Comment: The value for ol_cnt cannot be entered, but must be determined by the application upon
processing of the input data.

• One repeating group of fields: OL_I_ID, OL_SUPPLY_W_ID and OL_QUANTITY. The group is repeated
ol_cnt times (once per item in the order). The values of these fields are chosen as per Clause 2.4.1.5.

 Comment: In order to maintain a reasonable amount of keyed input, the supply warehouse fields must be
filled in for each item, even when the supply warehouse is the home warehouse.

2.4.3.3 The emulated terminal must display, in the appropriate fields of the input/output screen, all input
data and the output data resulting from the execution of the transaction. The display fields are divided in two
groups as follows:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 31 of 130

• One non-repeating group of fields: W_ID, D_ID, C_ID, O_ID, O_OL_CNT, C_LAST, C_CREDIT,
C_DISCOUNT, W_TAX, D_TAX, O_ENTRY_D, total_amount, and an optional execution status message other
than "Item number is not valid".

• One repeating group of fields: OL_SUPPLY_W_ID, OL_I_ID, I_NAME, OL_QUANTITY, S_QUANTITY,
brand_generic, I_PRICE, and OL_AMOUNT. The group is repeated O_OL_CNT times (once per item in the
order), equal to the computed value of ol_cnt.

2.4.3.4 For transactions that are rolled back as a result of an unused item number (1% of all New-Order
transactions), the emulated terminal must display in the appropriate fields of the input/output screen the fields:
W_ID, D_ID, C_ID, C_LAST, C_CREDIT, O_ID, and the execution status message "Item number is not valid". Note
that no execution status message is required for successfully committed transactions. However, this field may not
display "Item number is not valid" if the transaction is successful.

Comment: The number of the rolled back order, O_ID, must be displayed to verify that part of the transaction was
processed.

2.4.3.5 The following table summarizes the terminal I/O requirements for the New-Order transaction:

 Enter Display Display Coordinates
 After rollback Row/Column

Non-repeating W_ID W_ID 2/12
Group D_ID D_ID D_ID 2/29
 C_ID C_ID C_ID 3/12
 C_LAST C_LAST 3/25
 C_CREDIT C_CREDIT 3/52
 C_DISCOUNT 3/64
 W_TAX 4/51
 D_TAX 4/67
 O_OL_CNT 4/42
 O_ID O_ID 4/15
 O_ENTRY_D 2/61
 total-amount 22/71
 "Item number 22/19
 is not valid"

Repeating Group OL_SUPPLY_W_ID OL_SUPPLY_W_ID 7-22/3
 OL_I_ID OL_I_ID 7-22/10
 I_NAME 7-22/20
 OL_QUANTITY OL_QUANTITY 7-22/45
 S_QUANTITY 7-22/51
 brand-generic 7-22/58
 I_PRICE 7-22/63
 OL_AMOUNT 7-22/72

2.4.3.6 For general terminal I/O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 32 of 130

2.5 The Payment Transaction

The Payment business transaction updates the customer's balance and reflects the payment on the district and
warehouse sales statistics. It represents a light-weight, read-write transaction with a high frequency of execution
and stringent response time requirements to satisfy on-line users. In addition, this transaction includes non-primary
key access to the CUSTOMER table.

2.5.1 Input Data Generation

2.5.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement
interval.

2.5.1.2 The district number (D_ID) is randomly selected within [1 ..10] from the home warehouse (D_W_ID) =
W_ID). The customer is randomly selected 60% of the time by last name (C_W_ID , C_D_ID, C_LAST) and 40% of the
time by number (C_W_ID , C_D_ID , C_ID). Independent of the mode of selection, the customer resident warehouse
is the home warehouse 85% of the time and is a randomly selected remote warehouse 15% of the time. This can be
implemented by generating two random numbers x and y within [1 .. 100];

• If x <= 85 a customer is selected from the selected district number (C_D_ID = D_ID) and the home warehouse
number (C_W_ID = W_ID). The customer is paying through his/her own warehouse.

• If x > 85 a customer is selected from a random district number (C_D_ID is randomly selected within [1 .. 10]),
and a random remote warehouse number (C_W_ID is randomly selected within the range of active
warehouses (see Clause 4.2.2), and C_W_ID ? W_ID). The customer is paying through a warehouse and a
district other than his/her own.

• If y <= 60 a customer last name (C_LAST) is generated according to Clause 4.3.2.3 from a non-uniform
random value using the NURand(255,0,999) function. The customer is using his/her last name and is
one of the possibly several customers with that last name.

 Comment: This case illustrates the situation when a customer does not use his/her unique customer
number.

• If y > 60 a non-uniform random customer number (C_ID) is selected using the NURand(1023,1,3000)
function. The customer is using his/her customer number.

Comment: If the system is configured for a single warehouse, then all customers are selected from that single home
warehouse.

2.5.1.3 The payment amount (H_AMOUNT) is randomly selected within [1.00 .. 5,000.00].

2.5.1.4 The payment date (H_DATE) in generated within the SUT by using the current system date and time.

2.5.1.5 A Payment transaction is said to be home if the customer belongs to the warehouse from which the
payment is entered (when C_W_ID = W_ID).

2.5.1.6 A Payment transaction is said to be remote if the warehouse from which the payment is entered is not
the one to which the customer belongs (when C_W_ID does not equal W_ID).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 33 of 130

2.5.2 Transaction Profile

2.5.2.1 The Payment transaction enters a customer's payment with a single database transaction and is
comprised of:

Case 1 , the customer is selected based on customer number:

 3 row selections with data retrieval and update,

 1 row insertion.

Case 2 , the customer is selected based on customer last name:

 2 row selections (on average) with data retrieval,

 3 row selections with data retrieval and update,

 1 row insertion.

Note: The above summary is provided for information only. The actual requirement is defined by the detailed
transaction profile below.

2.5.2.2 For a given warehouse number (W_ID), district number (D_W_ID , D_ID), customer number (C_W_ID
, C_D_ID , C_ ID) or customer last name (C_W_ID , C_D_ID , C_LAST), and payment amount (H_AMOUNT):

• The input data (see Clause 2.5.3.2) are communicated to the SUT.

• A database transaction is started.

• The row in the WAREHOUSE table with matching W_ID is selected. W_NAME, W_STREET_1,
W_STREET_2, W_CITY, W_STATE, and W_ZIP are retrieved and W_YTD, the warehouse's year-to-date
balance, is increased by H_ AMOUNT.

• The row in the DISTRICT table with matching D_W_ID and D_ID is selected. D_NAME, D_STREET_1,
D_STREET_2, D_CITY, D_STATE, and D_ZIP are retrieved and D_YTD, the district's year-to-date balance, is
increased by H_AMOUNT.

• Case 1, the customer is selected based on customer number: the row in the CUSTOMER table with matching
C_W_ID, C_D_ID and C_ID is selected. C_FIRST, C_MIDDLE, C_LAST, C_STREET_1, C_STREET_2,
C_CITY, C_STATE, C_ZIP, C_PHONE, C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, and
C_BALANCE are retrieved. C_BALANCE is decreased by H_AMOUNT. C_YTD_PAYMENT is increased by
H_AMOUNT. C_PAYMENT_CNT is incremented by 1.

 Case 2, the customer is selected based on customer last name: all rows in the CUSTOMER table with
matching C_W_ID, C_D_ID and C_LAST are selected sorted by C_FIRST in ascending order. Let n be the
number of rows selected. C_ID, C_FIRST, C_MIDDLE, C_STREET_1, C_STREET_2, C_CITY, C_STATE,
C_ZIP, C_PHONE, C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, and C_BALANCE are retrieved
from the row at position (n/2 rounded up to the next integer) in the sorted set of selected rows from the
CUSTOMER table. C_BALANCE is decreased by H_AMOUNT. C_YTD_PAYMENT is increased by
H_AMOUNT. C_PAYMENT_CNT is incremented by 1.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 34 of 130

• If the value of C_CREDIT is equal to "BC", then C_DATA is also retrieved from the selected customer and the
following history information: C_ID, C_D_ID, C_W_ID, D_ID, W_ID, and H_AMOUNT, are inserted at the
left of the C_DATA field by shifting the existing content of C_DATA to the right by an equal number of bytes
and by discarding the bytes that are shifted out of the right side of the C_DATA field. The content of the
C_DATA field never exceeds 500 characters. The selected customer is updated with the new C_DATA field. If
C_DATA is implemented as two fields (see Clause 1.4.9), they must be treated and operated on as one single
field.

 Comment: The format used to store the history information must be such that its display on the input/output
screen is in a readable format. (e.g. the W_ID portion of C_DATA must use the same display format as the
output field W_ID).

• H_DATA is built by concatenating W_NAME and D_NAME separated by 4 spaces.

• A new row is inserted into the HISTORY table with H_C_ID = C_ID, H_C_D_ID = C_D_ID, H_C_W_ID =
C_W_ID, H_D_ID = D_ID, and H_W_ID = W_ID.

• The database transaction is committed.

• The output data (see Clause 2.5.3.3) are communicated to the terminal.

2.5.3 Terminal I/O

2.5.3.1 For each transaction the originating terminal must display the following input/output screen with all
input and output fields cleared (with either spaces or zeros) except for the Warehouse field which has not changed
and must display the fixed W_ID value associated with that terminal. In addition, all address fields (i.e.,
W_STREET_1, W_STREET_2, W_CITY, W_STATE, and W_ZIP) of the warehouse may display the fixed values for
these fields if these values were already retrieved in a previous transaction.

 Payment
Date: DD-MM-YYYY hh:mm:ss

Warehouse: 9999 District: 99
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX XX XXXXX-XXXX XXXXXXXXXXXXXXXXXXXX XX XXXXX-XXXX

Customer: 9999 Cust-Warehouse: 9999 Cust-District: 99
Name: XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX Since: DD-MM-YYYY
 XXXXXXXXXXXXXXXXXXXX Credit: XX
 XXXXXXXXXXXXXXXXXXXX %Disc: 99.99
 XXXXXXXXXXXXXXXXXXXX XX XXXXX-XXXX Phone: XXXXXX-XXX-XXX-XXXX

Amount Paid: $9999.99 New Cust-Balance: $-9999999999.99
Credit Limit: $9999999999.99

Cust-Data: XX
 XX
 XX
 XX

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 35 of 130

2.5.3.2 The emulated user must enter, in the appropriate fields of the input/output screen, the required input
data which is organized as the distinct fields: D_ID, C_ID or C_LAST, C_D_ID, C_W_ID, and H_AMOUNT.

Comment: In order to maintain a reasonable amount of keyed input, the customer warehouse field must be filled in
even when it is the same as the home warehouse.

2.5.3.3 The emulated terminal must display, in the appropriate fields of the input/output screen, all input
data and the output data resulting from the execution of the transaction. The following fields are displayed: W_ID,
D_ID, C_ID, C_D_ID, C_W_ID, W_STREET_1, W_STREET_2, W_CITY, W_STATE, W_ZIP, D_STREET_1,
D_STREET_2, D_CITY, D_STATE, D_ZIP, C_FIRST, C_MIDDLE, C_LAST, C_STREET_1, C_STREET_2, C_CITY,
C_STATE, C_ZIP, C_PHONE, C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, C_BALANCE, the first 200
characters of C_DATA (only if C_CREDIT = "BC"), H_AMOUNT, and H_DATE.

2.5.3.4 The following table summarizes the terminal I/O requirements for the Payment transaction:

 Enter Display Coordinates
 Row/Column

Non-repeating Group W_ID 4/12
 D_ID D_ID 4/52
 C_ID 1 C_ID 9/11
 C_D_ID C_D_ID 9/54
 C_W_ID C_W_ID 9/33
 H_AMOUNT H_AMOUNT 15/24
 H_DATE 2/7
 W_STREET_1 5/1
 W_STREET_2 6/1
 W_CITY 7/1
 W_STATE 7/22
 W_ZIP 7/25
 D_STREET_1 5/42
 D_STREET_2 6/42
 D_CITY 7/42
 D_STATE 7/63
 D_ZIP 7/66
 C_FIRST 10/9
 C_MIDDLE 10/26
 C_LAST 2 C_LAST 10/29
 C_STREET_1 11/9
 C_STREET_2 12/9
 C_CITY 13/9
 C_STATE 13/30
 C_ZIP 13/33
 C_PHONE 13/58
 C_SINCE 10/58
 C_CREDIT 11/58
 C_CREDIT_LIM 16/18
 C_DISCOUNT 12/58
 C_BALANCE 15/56

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 36 of 130

 C_DATA 3 18-21/12

 1 Enter only for payment by customer number
 2 Enter only for payment by customer last name
 3 Display the first 200 characters only if C_CREDIT = "BC"

2.5.3.5 For general terminal I/O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 37 of 130

2.6 The Order-Status Transaction

The Order-Status business transaction queries the status of a customer's last order. It represents a mid-weight read-
only database transaction with a low frequency of execution and response time requirement to satisfy on-line users.
In addition, this table includes non-primary key access to the CUSTOMER table.

2.6.1 Input Data Generation

2.6.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement
interval.

2.6.1.2 The district number (D_ID) is randomly selected within [1 ..10] from the home warehouse. The
customer is randomly selected 60% of the time by last name (C_W_ID, C_D_ID, C_LAST) and 40% of the time by
number (C_W_ID, C_D_ID, C_ID) from the selected district (C_D_ID = D_ID) and the home warehouse number
(C_W_ID = W_ID). This can be implemented by generating a random number y within [1 .. 100];

• If y <= 60 a customer last name (C_LAST) is generated according to Clause 4.3.2.3 from a non-uniform
random value using the NURand(255,0,999) function. The customer is using his/her last name and is
one of the, possibly several, customers with that last name.

 Comment: This case illustrates the situation when a customer does not use his/her unique customer
number.

• If y > 60 a non-uniform random customer number (C_ID) is selected using the NURand(1023,1,3000)
function. The customer is using his/her customer number.

2.6.2 Transaction Profile

2.6.2.1 Querying for the status of an order is done in a single database transaction with the following steps:

1. Find the customer and his/her last order, comprised of:

 Case 1 , the customer is selected based on customer number:

 2 row selections with data retrieval.

 Case 2 , the customer is selected based on customer last name:

 4 row selections (on average) with data retrieval.

2. Check status (delivery date) of each item on the order (average items-per-order = 10), comprised of:

 (1 * items-per-order) row selections with data retrieval.

Note: The above summary is provided for information only. The actual requirement is defined by the detailed
transaction profile below.

2.6.2.2 For a given customer number (C_W_ID , C_D_ID , C_ ID):

• The input data (see Clause 2.6.3.2) are communicated to the SUT.

• A database transaction is started.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 38 of 130

• Case 1, the customer is selected based on customer number: the row in the CUSTOMER table with matching
C_W_ID, C_D_ID, and C_ID is selected and C_BALANCE, C_FIRST, C_MIDDLE, and C_LAST are retrieved.

 Case 2, the customer is selected based on customer last name: all rows in the CUSTOMER table with
matching C_W_ID, C_D_ID and C_LAST are selected sorted by C_FIRST in ascending order. Let n be the
number of rows selected. C_BALANCE, C_FIRST, C_MIDDLE, and C_LAST are retrieved from the row at
position n/2 rounded up in the sorted set of selected rows from the CUSTOMER table.

• The row in the ORDER table with matching O_W_ID (equals C_W_ID), O_D_ID (equals C_D_ID), O_C_ID
(equals C_ID), and with the largest existing O_ID, is selected. This is the most recent order placed by that
customer. O_ID, O_ENTRY_D, and O_CARRIER_ID are retrieved.

• All rows in the ORDER-LINE table with matching OL_W_ID (equals O_W_ID), OL_D_ID (equals O_D_ID),
and OL_O_ID (equals O_ID) are selected and the corresponding sets of OL_I_ID, OL_SUPPLY_W_ID,
OL_QUANTITY, OL_AMOUNT, and OL_DELIVERY_D are retrieved.

• The database transaction is committed.

 Comment: a commit is not required as long as all ACID properties are satisfied (see Clause 3).

• The output data (see Clause 2.6.3.3) are communicated to the terminal.

2.6.3 Terminal I/O

2.6.3.1 For each transaction the originating terminal must display the following input/output screen with all
input and output fields cleared (with either spaces or zeros) except for the Warehouse field which has not changed
and must display the fixed W_ID value associated with that terminal.

 Order-Status
Warehouse: 9999 District: 99
Customer: 9999 Name: XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX
Cust-Balance: $-99999.99

Order-Number: 99999999 Entry-Date: DD-MM-YYYY hh:mm:ss Carrier-Number: 99
Supply-W Item-Id Qty Amount Delivery-Date
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 39 of 130

2.6.3.2 The emulated user must enter, in the appropriate field of the input/output screen, the required input
data which is organized as the distinct fields: D_ID and either C_ID or C_LAST.

2.6.3.3 The emulated terminal must display, in the appropriate fields of the input/output screen, all input
data and the output data resulting from the execution of the transaction. The display fields are divided in two
groups as follows:

• One non-repeating group of fields: W_ID, D_ID, C_ID, C_FIRST, C_MIDDLE, C_LAST, C_BALANCE, O_ID,
O_ENTRY_D, and O_CARRIER_ID;

• One repeating group of fields: OL_SUPPLY_W_ID, OL_I_ID, OL_QUANTITY, OL_AMOUNT, and
OL_DELIVERY_D. The group is repeated O_OL_CNT times (once per item in the order).

Comment 1: The order of items shown on the Order-Status screen do not need to match the order in which the items
were entered in its corresponding New-Order screen.

Comment 2: If OL_DELIVERY_D is null (i.e., the order has not been delivered), the terminal must display an
implementation specific null date representation (e.g., blanks, 99-99-9999, etc.). The chosen null date representation
must not change during the test.

2.6.3.4 The following table summarizes the terminal I/O requirements for the Order-Status transaction:

 Enter Display Coordinates
 Row/Column

Non-repeating Group W_ID 2/12
 D_ID D_ID 2/29
 C_ID 1 C_ID 3/11
 C_FIRST 3/24
 C_MIDDLE 3/41
 C_LAST 2 C_LAST 3/44
 C_BALANCE 4/16
 O_ID 6/15
 O_ENTRY_D 6/38
 O_CARRIER_ID 6/76

Repeating Group OL_SUPPLY_W_ID 8-22/3
 OL_I_ID 8-22/14
 OL_QUANTITY 8-22/25
 OL_AMOUNT 8-22/33
 OL_DELIVERY_D 8-22/47

 1 Enter only for query by customer number.
 2 Enter only for query by customer last name.

2.6.3.5 For general terminal I/O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 40 of 130

2.7 The Delivery Transaction

The Delivery business transaction consists of processing a batch of 10 new (not yet delivered) orders. Each order is
processed (delivered) in full within the scope of a read-write database transaction. The number of orders delivered
as a group (or batched) within the same database transaction is implementation specific. The business transaction,
comprised of one or more (up to 10) database transactions, has a low frequency of execution and must complete
within a relaxed response time requirement.

The Delivery transaction is intended to be executed in deferred mode through a queuing mechanism, rather than
interactively, with terminal response indicating transaction completion. The result of the deferred execution is
recorded into a result file.

2.7.1 Input Data Generation

2.7.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement
interval.

2.7.1.2 The carrier number (O_CARRIER_ID) is randomly selected within [1 .. 10].

2.7.1.3 The delivery date (OL_DELIVERY_D) is generated within the SUT by using the current system date
and time.

2.7.2 Deferred Execution

2.7.2.1 Unlike the other transactions in this benchmark, the Delivery transaction must be executed in
deferred mode. This mode of execution is primarily characterized by queuing the transaction for deferred execution,
returning control to the originating terminal independently from the completion of the transaction, and recording
execution information into a result file.

2.7.2.2 Deferred execution of the Delivery transaction must adhere to the following rules:

1. The business transaction is queued for deferred execution as a result of entering the last input character.

2. The deferred execution of the business transaction must follow the profile defined in Clause 2.7.4 with the
input data defined in Clause 2.7.1 as entered through the input/output screen and communicated to the
deferred execution queue.

3. At least 90% of the business transactions must complete within 80 seconds of their being queued for
execution.

4. Upon completion of the business transaction, the following information must have been recorded into a
result file:

• The time at which the business transaction was queued.

• The warehouse number (W_ID) and the carried number (O_CARRIER_ID) associated with the business
transaction.

• The district number (D_ID) and the order number (O_ID) of each order delivered by the business
transaction.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 41 of 130

• The time at which the business transaction completed.

2.7.2.3 The result file associated with the deferred execution of the Delivery business transaction is only for
the purpose of recording information about that transaction and is not relevant to the business function being
performed. The result file must adhere to the following rules:

1. All events must be completed before the related information is recorded (e.g., the recording of a district
and order number must be done after the database transaction, within which this order was delivered,
has been committed);

2. No ACID property is required (e.g., the recording of a district and order number is not required to be
atomic with the actual delivery of that order) as the result file is used for benchmarking purposes only.

3. During the measurement interval the result file must be located either on a durable medium (see clause
3.5.1) or in the internal memory of the SUT. In this last case, the result file must be transferred onto a
durable medium after the last measurement interval of the test run (see Clause 5.5).

2.7.3 Terminal I/O

2.7.3.1 For each transaction the originating terminal must display the following input/output screen with all
input and output fields cleared (with either spaces or zeros) except for the Warehouse field which has not changed
and must display the fixed W_ID value associated with that terminal.

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 Delivery
Warehouse: 9999

Carrier Number: 99

Execution Status: XXXXXXXXXXXXXXXXXXXXXXXXX

2.7.3.2 The emulated user must enter, in the appropriate input field of the input/output screen, the required
input data which is organized as one distinct field: O_CARRIER_ID.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 42 of 130

2.7.3.3 The emulated terminal must display, in the appropriate output field of the input/output screen, all
input data and the output data which results from the queuing of the transaction. The following fields are
displayed: W_ID, O_CARRIER_ID, and the status message "Delivery has been queued".

2.7.3.4 The following table summarizes the terminal I/O requirements for the Delivery transaction:

 Enter Display Coordinates
 Row/Column

Non-repeating Group W_ID 2/12
 O_CARRIER_ID O_CARRIER_ID 4/17
 "Delivery has been queued" 6/19

2.7.3.5 For general terminal I/O requirements, see Clause 2.2.

2.7.4 Transaction Profile

2.7.4.1 The deferred execution of the Delivery transaction delivers one outstanding order (average items-per-
order = 10) for each one of the 10 districts of the selected warehouse using one or more (up to 10) database
transactions. Delivering each order is done in the following steps:

1. Process the order, comprised of:

 1 row selection with data retrieval,

 (1 + items-per-order) row selections with data retrieval and update.

2. Update the customer's balance, comprised of:

 1 row selections with data update.

3. Remove the order from the new-order list, comprised of:

 1 row deletion.

Comment: This business transaction can be done within a single database transaction or broken down into up to 10
database transactions to allow the test sponsor the flexibility to implement the business transaction with the most
efficient number of database transactions.

Note: The above summary is provided for information only. The actual requirement is defined by the detailed
transaction profile below.

2.7.4.2 For a given warehouse number (W_ID), for each of the 10 districts (D_W_ID , D_ID) within that
warehouse, and for a given carrier number (O_CARRIER_ID):

• The input data (see Clause 2.7.3.2) are retrieved from the deferred execution queue.

• A database transaction is started unless a database transaction is already active from being started as part of
the delivery of a previous order (i.e., more than one order is delivered within the same database transaction).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 43 of 130

• The row in the NEW-ORDER table with matching NO_W_ID (equals W_ID) and NO_D_ID (equals D_ID)
and with the lowest NO_O_ID value is selected. This is the oldest undelivered order of that district.
NO_O_ID, the order number, is retrieved. If no matching row is found, then the delivery of an order for this
district is skipped. The condition in which no outstanding order is present at a given district must be
handled by skipping the delivery of an order for that district only and resuming the delivery of an order from
all remaining districts of the selected warehouse. If this condition occurs in more than 1%, or in more than
one, whichever is greater, of the business transactions, it must be reported. The result file must be organized
in such a way that the percentage of skipped deliveries and skipped districts can be determined.

• The selected row in the NEW-ORDER table is deleted.

• The row in the ORDER table with matching O_W_ID (equals W_ ID), O_D_ID (equals D_ID), and O_ID
(equals NO_O_ID) is selected, O_C_ID, the customer number, is retrieved, and O_CARRIER_ID is updated.

• All rows in the ORDER-LINE table with matching OL_W_ID (equals O_W_ID), OL_D_ID (equals O_D_ID),
and OL_O_ID (equals O_ID) are selected. All OL_DELIVERY_D, the delivery dates, are updated to the
current system time as returned by the operating system and the sum of all OL_AMOUNT is retrieved.

• The row in the CUSTOMER table with matching C_W_ID (equals W_ID), C_D_ID (equals D_ID), and C_ID
(equals O_C_ID) is selected and C_BALANCE is increased by the sum of all order-line amounts
(OL_AMOUNT) previously retrieved. C_DELIVERY_CNT is incremented by 1.

• The database transaction is committed unless more orders will be delivered within this database transaction.

• Information about the delivered order (see Clause 2.7.2.2) is recorded into the result file (see Clause 2.7.2.3).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 44 of 130

2.8 The Stock-Level Transaction

The Stock-Level business transaction determines the number of recently sold items that have a stock level below a
specified threshold. It represents a heavy read-only database transaction with a low frequency of execution, a
relaxed response time requirement, and relaxed consistency requirements.

2.8.1 Input Data Generation

2.8.1.1 Each terminal must use a unique value of (W_ID, D_ID) that is constant over the whole
measurement, i.e., D_IDs cannot be re-used within a warehouse.

2.8.1.2 The threshold of minimum quantity in stock (threshold) is selected at random within [10 .. 20].

2.8.2 Transaction Profile

2.8.2.1 Examining the level of stock for items on the last 20 orders is done in one or more database
transactions with the following steps:

1. Examine the next available order number, comprised of:

 1 row selection with data retrieval.

2. Examine all items on the last 20 orders (average items-per-order = 10) for the district, comprised of:

 (20 * items-per-order) row selections with data retrieval.

3. Examine, for each distinct item selected, if the level of stock available at the home warehouse is below the
threshold, comprised of:

 At most (20 * items-per-order) row selections with data retrieval.

Note: The above summary is provided for information only. The actual requirement is defined by the detailed
transaction profile below.

2.8.2.2 For a given warehouse number (W_ID), district number (D_W_ID , D_ID), and stock level threshold
(threshold):

• The input data (see Clause 2.8.3.2) are communicated to the SUT.

• A database transaction is started.

• The row in the DISTRICT table with matching D_W_ID and D_ID is selected and D_NEXT_O_ID is retrieved.

• All rows in the ORDER-LINE table with matching OL_W_ID (equals W_ID), OL_D_ID (equals D_ID), and
OL_O_ID (lower than D_NEXT_O_ID and greater than or equal to D_NEXT_O_ID minus 20) are selected.
They are the items for 20 recent orders of the district.

• All rows in the STOCK table with matching S_I_ID (equals OL_I_ID) and S_W_ID (equals W_ID) from the list
of distinct item numbers and with S_QUANTITY lower than threshold are counted (giving low_stock).

 Comment: Stocks must be counted only for distinct items. Thus, items that have been ordered more than once
in the 20 selected orders must be aggregated into a single summary count for that item.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 45 of 130

• The current database transaction is committed.

 Comment: A commit is not needed as long as all the required ACID properties are satisfied (see Clause
2.8.2.3).

• The output data (see Clause 2.8.3.3) are communicated to the terminal.

2.8.2.3 Full serializability and repeatable reads are not required for the Stock-Level business transaction. All
data read must be committed and no older than the most recently committed data prior to the time this business
transaction was initiated. All other ACID properties must be maintained.

Comment: This clause allows the business transaction to be broken down into more than one database transaction.

2.8.3 Terminal I/O

2.8.3.1 For each transaction the originating terminal must display the following input/output screen with all
input and output fields cleared (with either spaces or zeros) except for the Warehouse and District fields which have
not changed and must display the fixed W_ID and D_ID values associated with that terminal.

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 Stock-Level
Warehouse: 9999 District: 99

Stock Level Threshold: 99

low stock: 999

2.8.3.2 The emulated user must enter, in the appropriate field of the input/output screen, the required input
data which is organized as the distinct field: threshold.

2.8.3.3 The emulated terminal must display, in the appropriate field of the input/output screen, all input
data and the output data which results from the execution of the transaction. The following fields are displayed:
W_ID, D_ID, threshold, and low_stock.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 46 of 130

2.8.3.4 The following table summarizes the terminal I/O requirements for the Stock-Level transaction:

 Enter Display Coordinates
 Row/Column

Non-repeating Group W_ID 2/12
 D_ID 2/29
 threshold threshold 4/24
 low_stock 6/12

2.8.3.5 For general terminal I/O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 47 of 130

Clause 3: TRANSACTION and SYSTEM PROPERTIES

3.1 The ACID Properties

It is the intent of this section to informally define the ACID properties and to specify a series of tests that must be
performed to demonstrate that these properties are met.

3.1.1 The ACID (Atomicity, Consistency, Isolation, and Durability) properties of transaction processing
systems must be supported by the system under test during the running of this benchmark. The only exception to
this rule is to allow non-repeatable reads for the Stock-Level transaction (see Clause 2.8.2.3).

3.1.2 No finite series of tests can prove that the ACID properties are fully supported. Passing the specified
tests is a necessary, but not sufficient, condition for meeting the ACID requirements. However, for fairness of
reporting, only the tests specified here are required and must appear in the Full Disclosure Report for this
benchmark.

Comment: These tests are intended to demonstrate that the ACID principles are supported by the SUT and enabled
during the performance measurement interval. They are not intended to be an exhaustive quality assurance test.

3.1.3 All mechanisms needed to insure full ACID properties must be enabled during both the test period
and the 8 hours of steady state. For example, if the system under test relies on undo logs, then logging must be
enabled for all transactions including those which do not include rollback in the transaction profile. When this
benchmark is implemented on a distributed system, tests must be performed to verify that home and remote
transactions, including remote transactions that are processed on two or more nodes, satisfy the ACID properties
(See Clauses 2.4.1.7, 2.4.1.8, 2.5.1.5, and 2.5.1.6 for the definition of home and remote transactions).

3.1.4 Although the ACID tests do not exercise all transaction types of TPC-C, the ACID properties must be
satisfied for all the TPC-C transactions.

3.1.5 Test sponsors reporting TPC results may perform ACID tests on any one system for which results
have been disclosed, provided that they use the same software executables (e.g., operating system, data manager,
transaction programs). For example, this clause would be applicable when results are reported for multiple systems
in a product line. However, the durability tests described in Clauses 3.5.3.2 and 3.5.3.3 must be run on all the
systems that are measured. All Full Disclosure Reports must identify the systems which were used to verify ACID
requirements and full details of the ACID tests conducted and results obtained.

3.2 Atomicity Requirements

3.2.1 Atomicity Property Definition

The system under test must guarantee that database transactions are atomic; the system will either perform all
individual operations on the data, or will assure that no partially-completed operations leave any effects on the
data.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 48 of 130

3.2.2 Atomicity Tests

3.2.2.1 Perform the Payment transaction for a randomly selected warehouse, district, and customer (by
customer number as specified in Clause 2.5.1.2) and verify that the records in the CUSTOMER, DISTRICT, and
WAREHOUSE tables have been changed appropriately.

3.2.2.2 Perform the Payment transaction for a randomly selected warehouse, district, and customer (by
customer number as specified in Clause 2.5.1.2) and substitute a ROLLBACK of the transaction for the COMMIT of
the transaction. Verify that the records in the CUSTOMER, DISTRICT, and WAREHOUSE tables have NOT been
changed.

3.3 Consistency Requirements

3.3.1 Consistency Property Definition

Consistency is the property of the application that requires any execution of a database transaction to take the
database from one consistent state to another, assuming that the database is initially in a consistent state.

3.3.2 Consistency Conditions

Twelve consistency conditions are defined in the following clauses to specify the level of database consistency
required across the mix of TPC-C transactions. A database, when populated as defined in Clause 4.3, must meet all
of these conditions to be consistent. If data is replicated, each copy must meet these conditions. Of the twelve
conditions, explicit demonstration that the conditions are satisfied is required for the first four only. Demonstration
of the last eight consistency conditions is not required because of the lengthy tests which would be necessary.

Comment: The consistency conditions were chosen so that they would remain valid within the context of a larger
order-entry application that includes the five TPC-C transactions (See Clause 1.1.). They are designed to be
independent of the length of time for which such an application would be executed. Thus, for example, a condition
involving I_PRICE was not included here since it is conceivable that within a larger application I_PRICE is
modified from time to time.

3.3.2.1 Consistency Condition 1

Entries in the WAREHOUSE and DISTRICT tables must satisfy the relationship:

 W_YTD = sum(D_YTD)

for each warehouse defined by (W_ID = D_W_ID).

3.3.2.2 Consistency Condition 2

Entries in the DISTRICT, ORDER, and NEW-ORDER tables must satisfy the relationship:

 D_NEXT_O_ID - 1 = max(O_ID) = max(NO_O_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 49 of 130

for each district defined by (D_W_ID = O_W_ID = NO_W_ID) and (D_ID = O_D_ID = NO_D_ID). This condition
does not apply to the NEW-ORDER table for any districts which have no outstanding new orders (i.e., the number of
rows is zero).

3.3.2.3 Consistency Condition 3

Entries in the NEW-ORDER table must satisfy the relationship:

 max(NO_O_ID) - min(NO_O_ID) + 1 = [number of rows in the NEW-ORDER table for this district]

for each district defined by NO_W_ID and NO_D_ID. This condition does not apply to any districts which have no
outstanding new orders (i.e., the number of rows is zero).

3.3.2.4 Consistency Condition 4

Entries in the ORDER and ORDER-LINE tables must satisfy the relationship:

 sum(O_OL_CNT) = [number of rows in the ORDER-LINE table for this district]

for each district defined by (O_W_ID = OL_W_ID) and (O_D_ID = OL_D_ID).

3.3.2.5 Consistency Condition 5

For any row in the ORDER table, O_CARRIER_ID is set to a null value if and only if there is a corresponding row in
the NEW-ORDER table defined by (O_W_ID, O_D_ID, O_ID) = (NO_W_ID, NO_D_ID, NO_O_ID).

3.3.2.6 Consistency Condition 6

For any row in the ORDER table, O_OL_CNT must equal the number of rows in the ORDER-LINE table for the
corresponding order defined by (O_W_ID, O_D_ID, O_ID) = (OL_W_ID, OL_D_ID, OL_O_ID).

3.3.2.7 Consistency Condition 7

For any row in the ORDER-LINE table, OL_DELIVERY_D is set to a null date/time if and only if the corresponding
row in the ORDER table defined by (O_W_ID, O_D_ID, O_ID) = (OL_W_ID, OL_D_ID, OL_O_ID) has
O_CARRIER_ID set to a null value.

3.3.2.8 Consistency Condition 8

Entries in the WAREHOUSE and HISTORY tables must satisfy the relationship:

 W_YTD = sum(H_AMOUNT)

for each warehouse defined by (W_ID = H_W_ID).

3.3.2.9 Consistency Condition 9

Entries in the DISTRICT and HISTORY tables must satisfy the relationship:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 50 of 130

 D_YTD = sum(H_AMOUNT)

for each district defined by (D_W_ID, D_ID) = (H_W_ID, H_D_ID).

3.3.2.10 Consistency Condition 10

Entries in the CUSTOMER, HISTORY, ORDER, and ORDER-LINE tables must satisfy the relationship:

 C_BALANCE = sum(OL_AMOUNT) - sum(H_AMOUNT)

where:
 H_AMOUNT is selected by (C_W_ID, C_D_ID, C_ID) = (H_C_W_ID, H_C_D_ID, H_C_ID)
and
 OL_AMOUNT is selected by:

 (OL_W_ID, OL_D_ID, OL_O_ID) = (O_W_ID, O_D_ID, O_ID) and
 (O_W_ID, O_D_ID, O_C_ID) = (C_W_ID, C_D_ID, C_ID) and
 (OL_DELIVERY_D is not a null value)

3.3.2.11 Consistency Condition 11

Entries in the CUSTOMER, ORDER and NEW-ORDER tables must satisfy the relationship:

 (count(*) from ORDER) - (count(*) from NEW-ORDER) = sum(C_DELIVERY_CNT)

for each district defined by (O_W_ID, O_D_ID) = (NO_W_ID, NO_D_ID) = (C_W_ID, C_D_ID).

3.3.2.12 Consistency Condition 12

Entries in the CUSTOMER and ORDER-LINE tables must satisfy the relationship:

 C_BALANCE + C_YTD_PAYMENT = sum(OL_AMOUNT)

for any randomly selected customers and where OL_DELIVERY_D is not set to a null date/time.

3.3.3 Consistency Tests

3.3.3.1 Verify that the database is initially consistent by verifying that it meets the consistency conditions
defined in Clauses 3.3.2.1 to 3.3.2.4. Describe the steps used to do this in sufficient detail so that the steps are
independently repeatable.

3.3.3.2 Immediately after performing the verification process described in Clause 3.3.3.1, do the following:

1. Use the standard driving mechanism to submit transactions to the SUT. The transaction rate must be
within 10% of the reported tpmC rate and meet all other requirements of a reported measurement interval
(see Clause 5.5), including the requirement that the interval contain at least one check-point (see Clause
5.5.2.2). The SUT must be run at this rate for at least 5 minutes.

2. Stop submitting transactions to the SUT and then repeat the verification steps done for Clause 3.3.3.1. The
database must still be consistent after applying transactions. Consistency Condition 4 need only be
verified for rows added to the ORDER and ORDER-LINE tables since the previous verification.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 51 of 130

3.4 Isolation Requirements

3.4.1 Isolation Property Definition

Isolation can be defined in terms of phenomena that can occur during the execution of concurrent database
transactions. The following phenomena are possible:

P0 ("Dirty Write"): Database transaction T1 reads a data element and modifies it. Database transaction T2 then
modifies or deletes that data element, and performs a COMMIT. If T1 were to attempt to re-read the data
element, it may receive the modified value from T2 or discover that the data element has been deleted.

P1 ("Dirty Read"): Database transaction T1 modifies a data element. Database transaction T2 then reads that data
element before T1 performs a COMMIT. If T1 were to perform a ROLLBACK, T2 will have read a value that
was never committed and that may thus be considered to have never existed.

P2 ("Non-repeatable Read"): Database transaction T1 reads a data element. Database transaction T2 then modifies
or deletes that data element, and performs a COMMIT. If T1 were to attempt to re-read the data element, it
may receive the modified value or discover that the data element has been deleted.

P3 ("Phantom"): Database transaction T1 reads a set of values N that satisfy some <search condition>. Database
transaction T2 then executes statements that generate one or more data elements that satisfy the <search
condition> used by database transaction T1. If database transaction T1 were to repeat the initial read with
the same <search condition>, it obtains a different set of values.

Each database transaction T1 and T2 above must be executed completely or not at all.

The following table defines four isolation levels with respect to the phenomena P0, P1, P2, and P3.

Isolation
Level

P0 P1 P2 P3

0 Not Possible Possible Possible Possible

1 Not Possible Not Possible Possible Possible

2 Not Possible Not Possible Not Possible Possible

3 Not Possible Not Possible Not Possible Not Possible

The following terms are defined:

T1 = New-Order transaction

T2 = Payment transaction

T3 = Delivery transaction

T4 = Order-Status transaction

T5 = Stock-Level transaction

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 52 of 130

Tn = Any arbitrary transaction

Although arbitrary, the transaction Tn may not do dirty writes.

The following table defines the isolation requirements which must be met by the TPC-C transactions.

Req.

For transactions

in this set:
these

phenomena:
must NOT be seen
by this transaction:

Textual Description:

1. {Ti, Tj}
1 = i,j = 4

P0, P1, P2, P3 Ti Level 3 isolation between New-
Order, Payment, Delivery, and Order-
Status transactions.

2. {Ti, Tn}
1 = i = 4

P0, P1, P2 Ti Level 2 isolation for New-Order,
Payment, Delivery, and Order-Status
transactions relative to any arbitrary
transaction.

3. {Ti, T5}
1 = i = n

P0, P1 T5 Level 1 isolation for Stock-Level
transaction relative to TPC-C
transactions and any arbitrary
transaction.

Sufficient conditions must be enabled at either the system or application level to ensure the required isolation
defined above is obtained.

3.4.2 Isolation Tests

For conventional locking schemes, isolation should be tested as described below. Systems that implement other
isolation schemes may require different validation techniques. It is the responsibility of the test sponsor to disclose
those techniques and the tests for them. If isolation schemes other than conventional locking are used, it is
permissible to implement these tests differently provided full details are disclosed. (Examples of different validation
techniques are shown in Isolation Test 7, Clause 3.4.2.7).

3.4.2.1 Isolation Test 1

This test demonstrates isolation for read-write conflicts of Order-Status and New-Order transactions. Perform the
following steps:

1. Start a New-Order transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start an Order-Status transaction T2 for the same customer used in T1. Transaction T2 attempts to read
the data for the order T1 has created.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that the results from T2 match the data entered in T1.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 53 of 130

3.4.2.2 Isolation Test 2

This test demonstrates isolation for read-write conflicts of Order-Status and New-Order transactions when the New-
Order transaction is ROLLED BACK. Perform the following steps:

1. Perform an Order-Status transaction T0 for some customer. Let T0 complete.

2. Start a New-Order transaction T1 for the same customer used in T0.

3. Stop transaction T1 immediately prior to COMMIT.

4. Start an Order-Status transaction T2 for the same customer used in T0. Transaction T2 attempts to read
the data for the order T1 has created.

5. Verify that transaction T2 waits.

6. ROLLBACK transaction T1. T2 should now complete.

7. Verify that the data returned from T2 match the data returned by T0.

3.4.2.3 Isolation Test 3

This test demonstrates isolation for write-write conflicts of two New-Order transactions. Perform the following
steps:

1. Start a New-Order transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start another New-Order transaction T2 for the same customer as T1.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that the order number returned for T2 is one greater than the order number for T1. Verify that the
value of D_NEXT_O_ID reflects the results of both T1 and T2, i.e., it has been incremented by two and is
one greater than the order number for T2.

3.4.2.4 Isolation Test 4

This test demonstrates isolation for write-write conflicts of two New-Order transactions when one transaction is
ROLLED BACK. Perform the following steps:

1. Start a New-Order transaction T1 which contains an invalid item number.

2. Stop transaction T1 immediately prior to ROLLBACK.

3. Start another New-Order transaction T2 for the same customer as T1.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that the order number returned for T2 is one greater than the previous order number. Verify that the
value of D_NEXT_O_ID reflects the result of only T2, i.e., it has been incremented by one and is one
greater than the order number for T2.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 54 of 130

3.4.2.5 Isolation Test 5

This test demonstrates isolation for write-write conflicts of Payment and Delivery transactions. Perform the
following steps:

1. Start a Delivery transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start a Payment transaction T2 for the same customer as one of the new orders being delivered by T1.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that C_BALANCE reflects the results of both T1 and T2.

Comment: If the Delivery business transaction is executed as multiple database transactions, then the transaction
T1, in bullet 6 above, can be chosen to be one of these database transactions.

3.4.2.6 Isolation Test 6

This test demonstrates isolation for write-write conflicts of Payment and Delivery transactions when the Delivery
transaction is ROLLED BACK. Perform the following steps:

1. Start a Delivery transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start a Payment transaction T2 for the same customer as one of the new orders being delivered by T1.

4. Verify that transaction T2 waits.

5. ROLLBACK transaction T1. T2 should now complete.

6. Verify that C_BALANCE reflects the results of only transaction T2.

3.4.2.7 Isolation Test 7

This test demonstrates repeatable reads for the New-Order transaction while an interactive transaction updates the
price of an item. Given two random item number x and y, perform the following steps:

1. Start a transaction T1. Query I_PRICE from items x and y. COMMIT transaction T1.

2. Start a New-Order transaction T2 for a group of items including item x twice and item y.

3. Stop transaction T2 after querying the price of item x a first time and immediately before querying the
prices of item y and of item x a second time.

4. Start a transaction T3. Increase the price of items x and y by 10 percent.

Case A, if transaction T3 stalls:

5A. Continue transaction T2 and verify that the price of items x (the second time) and y match the values read
by transaction T1. COMMIT transaction T2.

6A. Transaction T3 should now complete and be COMMITTED.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 55 of 130

7A. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4.

8A. Verify that the prices read by transaction T4 match the values set by transaction T3.

Case B , if transaction T3 does not stall and transaction T2 ROLLS BACK:

5B. Transaction T3 has completed and has been COMMITTED.

6B. Continue transaction T2 and verify that it is instructed to ROLL BACK by the data manager.

7B. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4

8B. Verify that the prices read by transaction T4 match the values set by transaction T3.

Case C, if transaction T3 ROLLS BACK:

5C. Verify that transaction T3 is instructed to ROLL BACK by the data manager.

6C. Continue transaction T2 and verify that the price of items x (the second time) and y match the values read
by transaction T1. COMMIT transaction T2.

7C. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4

8C. Verify that the prices read by transaction T4 match the values read by transactions T1 and T2.

Case D, if transaction T3 does not stall and no transaction is ROLLED BACK:

5D. Transaction T3 has completed and has been COMMITTED.

6D. Continue transaction T2 and verify that the price of items x (the second time) and y match the values read
by transaction T1. COMMIT transaction T2.

7D. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4

8D. Verify that the prices read by transaction T4 match the values set by transaction T3.

Comment 1: This test is successfully executed if either case A, B, C or D of the above steps are followed. The test
sponsor must disclose the case followed during the execution of this test.

Comment 2: If the implementation uses replication on the ITEM table and all transactions in Isolation Test 7 use the
same copy of the ITEM table, updates to the ITEM table are not required to be propagated to other copies of the ITEM
table. This relaxation of ACID properties on a replicated table is only valid under the above conditions and in the
context of Isolation Test 7.

Comment 3: Transactions T1, T2, and T4 are not used to measure throughput and are only used in the context of
Isolation Test 7.

3.4.2.8 Isolation Test 8

This test demonstrates isolation for Level 3 (phantom) protection between a Delivery and a New-Order transaction.
Perform the following steps:

1. Remove all rows for a randomly selected district and warehouse from the NEW-ORDER table.

2. Start a Delivery transaction T1 for the selected warehouse.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 56 of 130

3. Stop T1 immediately after reading the NEW-ORDER table for the selected district. No qualifying row
should be found.

4. Start a New-Order transaction T2 for the same warehouse and district.

Case A, if transaction T2 stalls:

5A. Continue transaction T1 by repeating the read of the NEW-ORDER table for the selected district.

6A. Verify that there is still no qualifying row found.

7A. Complete and COMMIT transaction T1.

8A. Transaction T2 should now complete.

Case B, if transaction T2 does not stall:

5B. Complete and COMMIT transaction T2.

6B. Continue transaction T1 by repeating the read of the NEW-ORDER table for the selected district.

7B. Verify that there is still no qualifying row found.

8B. Complete and COMMIT transaction T1.

Comment: Note that other cases, besides A and B, are possible. The intent of this test is to demonstrate that in all
cases when T1 repeats the read of the NEW-ORDER table for the selected district, there is still no qualifying row
found.

3.4.2.9 Isolation Test 9

This test demonstrates isolation for Level 3 (phantom) protection between an Order-Status and a New-Order
transaction. Perform the following steps:

1. Start an Order-Status transaction T1 for a selected customer.

2. Stop T1 immediately after reading the ORDER table for the selected customer. The most recent order for
that customer is found.

3. Start a New-Order transaction T2 for the same customer.

Case A, if transaction T2 stalls:

5A. Continue transaction T1 by repeating the read of the ORDER table for the selected customer.

6A. Verify that the order found is the same as in step 3.

7A. Complete and COMMIT transaction T1.

8A. Transaction T2 should now complete.

Case B, if transaction T2 does not stall.

5B. Complete and COMMIT transaction T2.

6B. Continue transaction T1 by repeating the read of the ORDER table for the selected district.

7B. Verify that the order found is the same as in step 3.

8B. Complete and COMMIT transaction T1.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 57 of 130

Comment: Note that other cases, besides A and B, are possible. The intent of this test is to demonstrate that in all
cases when T1 repeats the read of the ORDER table for the selected customer, the order found is the same as in step
3.

3.5 Durability Requirements

The tested system must guarantee durability: the ability to preserve the effects of committed transactions and ensure
database consistency after recovery from any one of the failures listed in Clause 3.5.3.

Comment: No system provides complete durability (i.e., durability under all possible types of failures). The specific
set of single failures addressed in Clause 3.5.3 is deemed sufficiently significant to justify demonstration of
durability across such failures.

3.5.1 Durable Medium DefinitionA durable medium is a data storage medium that is either:

1. An inherently non-volatile medium (e.g., magnetic disk, magnetic tape, optical disk, etc.) or

2. A volatile medium that will ensure the transfer of data automatically, before any data is lost, to an
inherently non-volatile medium after the failure of external power independently of reapplication of
external power.

 A configured and priced Uninterruptible Power Supply (UPS) is not considered external power.

Comment: A durable medium can fail; this is usually protected against by replication on a second durable medium
(e.g., mirroring) or logging to another durable medium. Memory can be considered a durable medium if it can
preserve data long enough to satisfy the requirement stated in item 2 above, for example, if it is accompanied by an
Uninterruptible Power Supply, and the contents of memory can be transferred to an inherently non-volatile medium
during the failure. Note that no distinction is made between main memory and memory performing similar
permanent or temporary data storage in other parts of the system (e.g., disk controller caches).

3.5.2 Committed Property Definition

A transaction is considered committed when the transaction manager component of the system has either written
the log or written the data for the committed updates associated with the transaction to a durable medium.

Comment 1: Transactions can be committed without the user subsequently receiving notification of that fact, since
message integrity is not required for TPC-C.

Comment 2: Although the order of operations in the transaction profiles (Clause 2) is immaterial, the actual
communication of the output data cannot begin until the commit operation has successfully completed.

3.5.3 List of single failures

3.5.3.1 Permanent irrecoverable failure of any single durable medium containing TPC-C database tables or
recovery log data.

Comment: If main memory is used as a durable medium, then it must be considered as a potential single point of
failure. Sample mechanisms to survive single durable medium failures are database archiving in conjunction with a
redo (after image) log, and mirrored durable media. If memory is the durable medium and mirroring is the
mechanism used to ensure durability, then the mirrored memories must be independently powered.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 58 of 130

3.5.3.2 Instantaneous interruption (system crash/system hang) in processing which requires system re-boot
to recover.

Comment: This implies abnormal system shutdown which requires loading of a fresh copy of the operating system
from the boot device. It does not necessarily imply loss of volatile memory. When the recovery mechanism relies on
the pre-failure contents of volatile memory, the means used to avoid the loss of volatile memory (e.g., an
Uninterruptible Power Supply) must be included in the system cost calculation. A sample mechanism to survive an
instantaneous interruption in processing is an undo/redo log.

3.5.3.3 Failure of all or part of memory (loss of contents).

Comment: This implies that all or part of memory has failed. This may be caused by a loss of external power or the
permanent failure of a memory board.

3.5.4 Durability Tests

The intent of these tests is to demonstrate that all transactions whose output messages have been received at the
terminal or RTE have in fact been committed in spite of any single failure from the list in Clause 3.5.3 and that all
consistency conditions are still met after the database is recovered.

It is required that the system crash test(s) and the loss of memory test(s) described in Clauses 3.5.3.2 and 3.5.3.3 be
performed under full terminal load and a fully scaled database. The durable media failure test(s) described in
Clause 3.5.3.1 may be performed on a subset of the SUT configuration and database. For the SUT subset, all multiple
hardware components, such as processors and disk/controllers in the full SUT configuration, must be represented
by the greater of 10% of the configuration or two of each of the multiple hardware components. The database must
be scaled to at least 10% of the fully scaled database, with a minimum of two warehouses. An exception to the
configuration requirements stated above may be allowed by the TPC Auditor in order to reduce benchmark
complexity. Any such exception must be documented in the attestation letter from the Auditor. Furthermore, the
standard driving mechanism must be used in this test. The test sponsor must state that to the best of their
knowledge, a fully scaled test would also pass all durability tests.

For each of the failure types defined in Clause 3.5.3. perform the following steps:

1. Compute the sum of D_NEXT_O_ID for all rows in the DISTRICT table to determine the current count of
the total number of orders (count1).

2. Start submitting TPC-C transactions. The transaction rate must be at least 10% of the reported tpmC rate
and meet all other requirements of a reported measurement interval (see Clause 5.5), excluding the
requirement that the interval contain at least one checkpoint (see Clause 5.5.2.2). The SUT must be run at
this rate for at least 5 minutes. On the Driver System, record committed and rolled back New-Order
transactions in a "success" file.

3. Cause the failure selected from the list in Clause 3.5.3.

4. Restart the system under test using normal recovery procedures.

5. Compare the contents of the "success" file and the ORDER table to verify that every record in the "success"
file for a committed New-Order transaction has a corresponding record in the ORDER table and that no
entries exist for rolled back transactions.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 59 of 130

 Repeat step 1 to determine the total number of orders (count2). Verify that count2-count1 is greater or
equal to the number of records in the "success" file for committed New-Order transactions. If there is an
inequality, the ORDER table must contain additional records and the difference must be less than or equal
to the number of terminals simulated.

 Comment: This difference should be due only to transactions which were committed on the system under
test, but for which the output data was not displayed on the input/output screen before the failure.

6. Verify Consistency Condition 3 as specified in Clause 3.3.2.3.

3.5.5 Additional Requirements

3.5.5.1 The recovery mechanism cannot use the contents of the HISTORY table to support the durability
property.

3.5.5.2 Roll-forward recovery from an archive database copy (e.g., a copy taken prior to the run) using redo
log data is not acceptable as the recovery mechanism in the case of failures listed in Clause 3.5.3.2 and 3.5.3.3. Note
that "checkpoints", "control points", "consistency points", etc. of the database taken during a run are not considered
to be archives.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 60 of 130

Clause 4: SCALING and DATABASE POPULATION

4.1 General Scaling Rules

The throughput of the TPC-C benchmark is driven by the activity of the terminals connected to each warehouse. To
increase the throughput, more warehouses and their associated terminals must be configured. Each warehouse
requires a number of rows to populate the database along with some storage space to maintain the data generated
during a defined period of activity called 60-day period. These requirements define how storage space and database
population scale with throughput.

4.1.1 The intent of the scaling requirements is to maintain the ratio between the transaction load presented
to the system under test, the cardinality of the tables accessed by the transactions, the required space for storage, and
the number of terminals generating the transaction load.

4.1.2 Should any scaling value in Clause 4.2 be exceeded, the others must be increased proportionally to
maintain the same ratios among them as in Clause 4.2.

4.1.3 The reported throughput may not exceed the maximum allowed by the scaling requirements in
Clause 4.2 and the pacing requirements in Clause 5.2. While the reported throughput may fall short of the maximum
allowed by the configured system, the price/performance computation (see Clause 7.1) must report the price for the
system as actually configured. To prevent over-scaling of systems, the reported throughput cannot fall short of 9
tpmC per configured warehouse.

Comment: The maximum throughput is achieved with infinitely fast transactions resulting in a null response time
and minimum required wait times. The intent of this clause is to prevent reporting a throughput that exceeds this
maximum, which is computed to be 12.86 tpmC per warehouse. The above 9 tpmC represents 70% of the computed
maximum throughput.

4.2 Scaling Requirements

4.2.1 The WAREHOUSE table is used as the base unit of scaling. The cardinality of all other tables (except
for ITEM) is a function of the number of configured warehouses (i.e., cardinality of the WAREHOUSE table). This
number, in turn, determines the load applied to the system under test which results in a reported throughput (see
Clause 5.4).

Comment 1: The cardinality of the HISTORY, NEW-ORDER, ORDER, and ORDER-LINE tables will naturally vary
as a result of repeated test executions. The initial database population and the transaction profiles are designed to
minimize the impact of this variation on performance and maintain repeatability between subsequent test results.

Comment 2: The cardinality of the ITEM table is constant regardless of the number of configured warehouses, as all
warehouses maintain stocks for the same catalog of items.

4.2.2 Configuration

The following scaling requirements represent the initial configuration for the test described in Clause 5:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 61 of 130

1. For each active warehouse in the database, the SUT must accept requests for transactions from a
population of 10 terminals.

2. For each table that composes the database, the cardinality of the initial population per warehouse is
specified as follows:

 Table Name Cardinality Typical 3 Row Typical 3 Table
 (in rows) Length (in bytes) Size (in 1,000 bytes)

 WAREHOUSE 1 89 0.089
 DISTRICT 10 95 0.950
 CUSTOMER 30k 655 19,650
 HISTORY 1 30k 46 1,380
 ORDER 4 30k 24 720
 NEW-ORDER 4 9k 8 72
 ORDER-LINE 4 300k 54 16,200
 STOCK 100k 306 30,600
 ITEM 2 100k 82 8,200

1 Small variations: subject to test execution as rows may be inserted and deleted by transaction activity
from test executions.

2 Fixed cardinality: does not scale with number of warehouses.

3 Typical lengths and sizes given here are examples, not requirements, of what could result from an
implementation (sizes do not include storage/access overheads).

4 One percent (1%) variation in row cardinality is allowed to account for the random variation
encountered during the initial data loading of the database.

Note: The symbol "k" used in the cardinality column means one thousand

3. Storage must be priced for sufficient space to store and maintain the data generated during a period of 60
days of activity with an average of 8 hours per day at the reported throughput called the 60-day period).
This space must be computed according to Clause 4.2.3 and must be usable by the data manager to store
and maintain the rows that would be added to the HISTORY, ORDER, and ORDER-LINE tables during
the 60-day period.

4. The increment (granularity) for scaling the database and the terminal population is one warehouse,
comprised of one WAREHOUSE row, 10 DISTRICT rows, their associated CUSTOMER, HISTORY,
ORDER, NEW-ORDER, and ORDER-LINE rows, 100,000 STOCK rows, 10 terminals, and priced storage
for the 60-day period.

Comment: Over-scaling the database, i.e., configuring a larger number of warehouses and associated tables (Wc)
than what is actually accessed during the measurement (Wa) is permitted, provided the following conditions are
met:

Let, Wc = number of warehouses configured at database generation,
 Wa = number of warehouses accessed during the measurement (active warehouses),
 Wi = number of warehouses not accessed during the measurement (inactive warehouses).

?? It can be demonstrated that inactive warehouses are not accessed during the measurement. This fact must be
demonstrated in one of the following ways:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 62 of 130

1. rows in the WAREHOUSE table that pertain to the inactive warehouses (Wi) must be deleted prior to the
measurement,

2. show that the sum of D_NEXT_O_ID for each of the inactive warehouses does not change during the
measurement, and that W_YTD for each of the inactive warehouses does not change during the measurement.

• the reported throughput cannot fall short of 9 tpmC per configured warehouse (Wc -see Clause 4.1.3),

• the 60-day space computations must be computed based on Wc, the number of warehouses configured at
database generation.

4.2.3 60-Day Space Computation

The storage space required for the 60-day period must be determined as follows:

1. The test database must be built including the initial database population (see Clause 4.3) and all indices
present during the test.

2. The test database must be built to sustain the reported throughput during an eight hour period. This
excludes performing on the database any operation that does not occur during the measurement interval
(see Clause 5.5).

3. The total storage space allocated for the test database must be decomposed into the following:

• Free-Space: any space allocated to the test database and which is available for future use. It is
comprised of all database storage space not used to store a database entity (e.g., a row, an index, a
metadatum) or not used as formatting overhead by the data manager.

• Dynamic-Space: any space used to store existing rows from the dynamic tables (i.e., the HISTORY,
ORDER, and ORDER-LINE tables). It is comprised of all database storage space used to store rows and
row storage overhead for the dynamic tables. It includes any data that is added to the database as a
result of inserting a new row independently of all indices. It does not include index data or other
overheads such as index overhead, page overhead, block overhead, and table overhead.

• Static-Space: any space used to store static information and indices. It is comprised of all space
allocated to the test database and which does not qualify as either Free-Space or Dynamic-Space.

4. Given that the system must be configured to sustain the reported throughput during an eight hour period,
the database must allow the dynamic tables to grow accordingly for at least eight hours without
impacting performance. Free-Space used to allow growth of the dynamic tables for an eight hour day at
the reported throughput is called the Daily-Growth. Given W, the number of configured warehouses on
the test system, the Daily-Growth must be computed as:

 Daily-Growth = (dynamic-Space / (W * 62.5)) * tpmC

 Note: In the formula above, 62.5 is used as a normalizing factor since the initial database population for
each warehouse holds the Dynamic-Space required for an eight hour day of activity at 62.5 tpmC.

5. Any Free-Space beyond 150% of the Daily-Growth is called Daily-Spread, and must be added to the
Dynamic-Space when computing the storage requirement for the 60-day period. The Daily-Spread must be
computed as:

 Daily-Spread = Free-Space - 1.5 * Daily-Growth

 If the computed Daily-Spread is negative, then a null value must be used for Daily-Spread.

6. The 60-Day-Space must be computed as:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 63 of 130

 60-Day-Space = Static-Space + 60 * (Daily-Growth + Daily-Spread)

7. The Dynamic-Space present in the test database is considered as part of the 60-Day-Space.

4.3 Database Population

4.3.1 The test described in Clause 5 requires that the properly scaled population be present in the test
database. Each table must contain the number of rows defined in Clause 4.2.2 prior to test execution (e.g., the New-
Order table must contain 2,000 rows per warehouse).

4.3.2 Definition of Terms

4.3.2.1 The term random means independently selected and uniformly distributed over the specified range of
values.

Comment: For the purpose of populating the initial database only, random numbers can be generated by selecting
entries in sequence from a set of at least 10,000 pregenerated random numbers. This technique cannot be used for the
field O_OL_CNT.

4.3.2.2 The notation random a-string [x .. y] (respectively, n-string [x .. y]) represents a string of random
alphanumeric (respectively, numeric) characters of a random length of minimum x, maximum y, and mean (y+x)/2.

Comment 1 : The character set used must be able to represent a minimum of 128 different characters.

Comment 2: Generating such strings can be implemented by the concatenation of two strings selected at random
from two separate arrays of strings, and where:

1. Both arrays contain a minimum of 10 different strings of characters.

2. The first array contains strings of x characters.

3. The second array contains strings of lengths uniformly distributed between zero and (y - x) characters.

4. Both arrays may contain strings that are pertinent to the row and the attribute (e.g., use an actual first
name for C_FIRST) instead of strings of random characters, as long as this does not bring any
improvement to the reported metrics.

4.3.2.3 The customer last name (C_LAST) must be generated by the concatenation of three variable length
syllables selected from the following list:

 0 1 2 3 4 5 6 7 8 9

 BAR OUGHT ABLE PRI PRES ESE ANTI CALLY ATION EING

Given a number between 0 and 999, each of the three syllables is determined by the corresponding digit in the three
digit representation of the number. For example, the number 371 generates the name PRICALLYOUGHT, and the
number 40 generates the name BARPRESBAR.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 64 of 130

4.3.2.4 The notation unique within [x] represents any one value within a set of x contiguous values, unique
within the group of rows being populated. When several groups of rows of the same type are populated (e.g., there is
one group of customer type rows for each district type row), each group must use the same set of x contiguous
values.

4.3.2.5 The notation random within [x .. y] represents a random value independently selected and uniformly
distributed between x and y, inclusively, with a mean of (x+y)/2, and with the same number of digits of precision as
shown. For example, [0.01 .. 100.00] has 10,000 unique values, whereas [1 ..100] has only 100 unique values.

4.3.2.6 The notation random permutation of [x .. y] represents a sequence of numbers from x to y arranged
into a random order. This is commonly known as a permutation (or selection) without replacement.

4.3.2.7 The warehouse zip code (W_ZIP), the district zip code (D_ZIP) and the customer zip code (C_ZIP) must be
generated by the concatenation of:

1. A random n-string of 4 numbers, and

2. The constant string '11111'.

Given a random n-string between 0 and 9999, the zip codes are determined by concatenating the n-string and the
constant '11111'. This will create 10,000 unique zip codes. For example, the n-string 0503 concatenated with 11111,
will make the zip code 050311111.

Comment: With 30,000 customers per warehouse and 10,000 zip codes available, there will be an average of 3
customers per warehouse with the same zip code.

4.3.3 Table Population Requirements

4.3.3.1 The initial database population must be comprised of:

• 100,000 rows in the ITEM table with:

 I_ID unique within [100,000]

 I_IM_ID random within [1 .. 10,000]

 I_NAME random a-string [14 .. 24]

 I_PRICE random within [1.00 .. 100.00]

 I_DATA random a-string [26 .. 50]. For 10% of the rows, selected at random, the string "ORIGINAL" must
be held by 8 consecutive characters starting at a random position within I_DATA

• 1 row in the WAREHOUSE table for each configured warehouse with:

 W_ID unique within [number_of_configured_warehouses]

 W_NAME random a-string [6 .. 10]

 W_STREET_1 random a-string [10 .. 20]

 W_STREET_2 random a-string [10 .. 20]

 W_CITY random a-string [10 .. 20]

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 65 of 130

 W_STATE random a-string of 2 letters

 W_ZIP generated according to Clause 4.3.2.7

 W_TAX random within [0.0000 .. 0.2000]

 W_YTD = 300,000.00

 For each row in the WAREHOUSE table:

o 100,000 rows in the STOCK table with:

 S_I_ID unique within [100,000]

 S_W_ID = W_ID

 S_QUANTITY random within [10 .. 100]

 S_DIST_01 random a-string of 24 letters

 S_DIST_02 random a-string of 24 letters

 S_DIST_03 random a-string of 24 letters

 S_DIST_04 random a-string of 24 letters

 S_DIST_05 random a-string of 24 letters

 S_DIST_06 random a-string of 24 letters

 S_DIST_07 random a-string of 24 letters

 S_DIST_08 random a-string of 24 letters

 S_DIST_09 random a-string of 24 letters

 S_DIST_10 random a-string of 24 letters

 S_YTD = 0

 S_ORDER_CNT = 0

 S_REMOTE_CNT = 0

 S_DATA random a-string [26 .. 50]. For 10% of the rows, selected at random, the string
 "ORIGINAL" must be held by 8 consecutive characters starting at a random position within
 S_DATA

o 10 rows in the DISTRICT table with:

 D_ID unique within [10]

 D_W_ID = W_ID

 D_NAME random a-string [6 .. 10]

 D_STREET_1 random a-string [10 .. 20]

 D_STREET_2 random a-string [10 .. 20]

 D_CITY random a-string [10 .. 20]

 D_STATE random a-string of 2 letters

 D_ZIP generated according to Clause 4.3.2.7

 D_TAX random within [0.0000 .. 0.2000]

 D_YTD = 30,000.00

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 66 of 130

 D_NEXT_O_ID = 3,001

 For each row in the DISTRICT table:

* 3,000 rows in the CUSTOMER table with:

 C_ID unique within [3,000]

 C_D_ID = D_ID

 C_W_ID = D_W_ID

 C_LAST generated according to Clause 4.3.2.3, iterating through the range of [0 .. 999] for the first
1,000 customers, and generating a non-uniform random number using the function
NURand(255,0,999) for each of the remaining 2,000 customers. The run-time constant C (see
Clause 2.1.6) used for the database population must be randomly chosen independently from the
test run(s).

 C_MIDDLE = "OE"

 C_FIRST random a-string [8 .. 16]

 C_STREET_1 random a-string [10 .. 20]

 C_STREET_2 random a-string [10 .. 20]

 C_CITY random a-string [10 .. 20]

 C_STATE random a-string of 2 letters

 C_ZIP generated according to Clause 4.3.2.7

 C_PHONE random n-string of 16 numbers

 C_SINCE date/time given by the operating system when the CUSTOMER table was populated.

 C_CREDIT = "GC". For 10% of the rows, selected at random, C_CREDIT = "BC"

 C_CREDIT_LIM = 50,000.00

 C_DISCOUNT random within [0.0000 .. 0.5000]

 C_BALANCE = -10.00

 C_YTD_PAYMENT = 10.00

 C_PAYMENT_CNT = 1

 C_DELIVERY_CNT = 0

 C_DATA random a-string [300 .. 500]

 For each row in the CUSTOMER table:

- 1 row in the HISTORY table with:

 H_C_ID = C_ID

 H_C_D_ID = H_D_ID = D_ID

 H_C_W_ID = H_W_ID = W_ID

 H_DATE current date and time

 H_AMOUNT = 10.00

 H_DATA random a-string [12 .. 24]

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 67 of 130

* 3,000 rows in the ORDER table with:

 O_ID unique within [3,000]

 O_C_ID selected sequentially from a random permutation of [1 .. 3,000]

 O_D_ID = D_ID

 O_W_ID = W_ID

 O_ENTRY_D current date/time given by the operating system

 O_CARRIER_ID random within [1 .. 10] if O_ID < 2,101, null otherwise

 O_OL_CNT random within [5 .. 15]

 O_ALL_LOCAL = 1

 For each row in the ORDER table:

- A number of rows in the ORDER-LINE table equal to O_OL_CNT, generated according to the rules
for input data generation of the New-Order transaction (see Clause 2.4.1) with:

 OL_O_ID = O_ID

 OL_D_ID = D_ID

 OL_W_ID = W_ID

 OL_NUMBER unique within [O_OL_CNT]

 OL_I_ID random within [1 .. 100,000]

 OL_SUPPLY_W_ID = W_ID

 OL_DELIVERY_D = O_ENTRY_D if OL_O_ID < 2,101, null otherwise

 OL_QUANTITY = 5

 OL_AMOUNT = 0.00 if OL_O_ID < 2,101, random within [0.01 .. 9,999.99] otherwise

 OL_DIST_INFO random a-string of 24 letters

* 900 rows in the NEW-ORDER table corresponding to the last 900 rows in the ORDER table for that
district (i.e., with NO_O_ID between 2,101 and 3,000), with:

 NO_O_ID = O_ID

 NO_D_ID = D_ID

 NO_W_ID = W_ID

Comment: Five percent (5%) variation from the target cardinality of S_DATA with ìORGINALî, I_DATA with
ìORIGINALî, and C_CREDIT with ìBCî is allowed to account for the random variation encountered during the
initial data loading of the database.

4.3.3.2 The implementation may not take advantage of the fact that some fields are initially populated with a
fixed value. For example, storage space cannot be saved by defining a default value for the field C_CREDIT_LIM and
storing this value only once in the database.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 68 of 130

Clause 5: PERFORMANCE METRICS and RESPONSE TIME

5.1 Definition of Terms

5.1.1 The term measurement interval refers to a steady state period during the execution of the benchmark
for which the test sponsor is reporting a throughput rating (see Clause 5.5 for detailed requirements).

5.1.2 The term completed transactions refers to any business transaction (see Clause 2.1.3) that has been
successfully committed at the SUT and whose output data has been displayed by the Remote Terminal Emulator (in
case of a New-Order, Payment, Order-Status, or Stock-Level transaction) or for which a complete entry has been
written into a result file (in case of a Delivery transaction). New-Order transactions that are rolled back, as required
by Clause 2.4.1.4, are considered as completed transactions.

5.2 Pacing of Transactions by Emulated Users

5.2.1 The figure below illustrates the cycle executed by each emulated user (see Clause 5.2.2). The active
portion of the screen is represented with bold face text:

Previous
Screen

menu

Input
Screen

menu

Output
Screen

1 - Select transaction type

3 - Measure Menu RT

2 - Display Screen

4 - Wait (Keying Time)

6 - Measure Txn. RT

5 - Display Data

7 - Wait (Think Time)

menu

5.2.2 Each emulated user executes a cycle comprised of screens, wait times, and response times (RTs) as
follows:

1. Selects a transaction type from the menu according to a weighted distribution (see Clause 5.2.3).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 69 of 130

2. Waits for the Input/Output Screen to be displayed.

3. Measures the Menu RT (see Clause 5.3.3).

4. Enters the required number of input fields (see Clause 2) over the defined minimum Keying Time (see
Clause 5.2.5.2).

5. Waits for the required number of output fields (see Clause 2) to be displayed on the Input/Output Screen.

6. Measures the Transaction RT (see Clause 5.3.4).

7. Waits for the defined minimum Think Time (see Clause 5.2.5.4) while the input/output screen remains
displayed.

At the end of the Think Time (Step 7) the emulated user loops back to select a transaction type from the menu (Step
1).

Comment: No action is required on the part of the SUT to cycle from Step 7 back to Step 1.

5.2.3 Each transaction type (i.e., business transaction) is available to each terminal through the Menu. Over
the measurement interval, the terminal population must maintain a minimum percentage of mix for each transaction
type as follows:

 Transaction Type Minimum % of mix

 New-Order 1 n/a
 Payment 43.0
 Order-Status 4.0
 Delivery 4.0
 Stock-Level 4.0

 1 There is no minimum for the New-Order transaction as its measured rate is the reported throughput.

Comment 1: The intent of the minimum percentage of mix for each transaction type is to execute approximately one
Payment transaction for each New-Order transaction and approximately one Order-Status transaction, one Delivery
transaction, and one Stock-Level transaction for every 10 New-Order transactions. This mix results in the complete
business processing of each order.

Comment 2: The total number of transactions, from which the minimum percentages of mix are derived, includes all
transactions that were selected from the Menu and completed (see Clause 5.1.2) within the measurement interval.

5.2.4 Regulation of Transaction Mix

Transaction types must be selected uniformly at random while maintaining the required minimum percentage of
mix for each transaction type over the measurement interval. This must be done using one of the techniques
described in Clauses 5.2.4.1 and 5.2.4.2.

5.2.4.1 A weight is associated to each transaction type on the menu. The required mix is achieved by
selecting each new transaction uniformly at random from a weighted distribution. The following requirements must
be satisfied when using this technique:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 70 of 130

1. The actual weights are chosen by the test sponsor and must result in meeting the required minimum
percentages of mix in Clause 5.2.3.

2. For the purpose of achieving the required transaction mix, the RTE can dynamically adjust the weight
associated to each transaction type during the measurement interval. These adjustments must be limited
so as to keep the weights within 5% on either side of their respective initial value.

5.2.4.2 One or more cards in a deck are associated to each transaction type on the Menu. The required mix is
achieved by selecting each new transaction uniformly at random from a deck whose content guarantees the required
transaction mix. The following requirements must be satisfied when using this technique:

1. Any number of terminals can share the same deck (including but not limited to one deck per terminal or
one deck for all terminals).

2. A deck must be comprised of one or more sets of 23 cards (i.e., 10 New-Order cards, 10 Payment cards,
and one card each for Order-Status, Delivery, and Stock-level). The minimum size of a deck is one set per
terminal sharing this deck. If more than one deck is used, then all decks must be of equal sizes.

 Comment: Generating the maximum percentage of New-Order transactions while achieving the required
mix can be done for example by sharing a deck of 230 cards between 10 terminals.

3. Each pass through a deck must be made in a different uniformly random order. If a deck is accessed
sequentially, it must be randomly shuffled each time it is exhausted. If a deck is accessed at random, cards
that are selected cannot be placed back in the deck until it is exhausted.

Comment: All terminals must select transactions using the same technique. Gaining a performance or a
price/performance advantage by driving one or more terminals differently than the rest of the terminal population
is not allowed.

5.2.5 Wait Times and Response Time Constraints

5.2.5.1 The Menu step is transaction independent. At least 90% of all Menu selections must have a Menu RT
(see Clause 5.3.3) of less than 2 seconds.

5.2.5.2 For each transaction type, the Keying Time is constant and must be a minimum of 18 seconds for
New-Order, 3 seconds for Payment, and 2 seconds each for Order-Status, Delivery, and Stock-Level.

5.2.5.3 At least 90% of all transactions of each type must have a Transaction RT (see Clause 5.3.4) of less than
5 seconds each for New-Order, Payment, Order-Status, and Delivery, and 20 seconds for Stock-Level.

Comment: The total number of transactions, from which the Transaction RT of New-Order is computed, includes
New-Order transactions that rollback as required by Clause 2.4.1.4.

5.2.5.4 For each transaction type, think time is taken independently from a negative exponential distribution.
Think time, Tt, is computed from the following equation:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 71 of 130

Tt = -log(r) * ??

where: log = natural log (base e)
 Tt = think time

 r = random number uniformly distributed between 0 and 1

 ? = mean think time

Each distribution may be truncated at 10 times its mean value

5.2.5.5 The beginning of all wait times (Keying Times and Think Times) are to be taken after the last character
of output has been displayed (see Clause 2.2.2) by the emulated terminal.

5.2.5.6 The 90th percentile response time for the New-Order, Payment, Order-Status, Stock-Level and the
interactive portion of the Delivery transactions must be greater than or equal to the average response time of that
transaction. This requirement is for the terminal response times only and does not apply to the deferred portion of
the Delivery transaction nor to the menu step.

5.2.5.7 The following table summarizes the transaction mix, wait times, and response time constraints:

 90th Percentile Minimum Mean
 Transaction Minimum Minimum Response Time of Think Time
 Type % of mix Keying Time Constraint Distribution

 New-Order n/a 18 sec. 5 sec. 12 sec.
 Payment 43.0 3 sec. 5 sec. 12 sec.
 Order-Status 4.0 2 sec. 5 sec. 10 sec.
 Delivery 1 4.0 2 sec. 5 sec. 5 sec.
 Stock-Level 4.0 2 sec. 20 sec. 5 sec.

 1 The response time is for the terminal response (acknowledging that the transaction has been queued), not
for the execution of the transaction itself. At least 90% of the transactions must complete within 80 seconds
of their being queued (see Clause 2.7.2.2).

Comment 1: The response time constraints are set such that the throughput of the system is expected to be
constrained by the response time requirement for the New-Order transaction. Response time constraints for other
transactions are relaxed for that purpose.

Comment 2: The keying times for the transactions are chosen to be approximately proportional to the number of
characters input, and the think times are chosen to be approximately proportional to the number of characters
output.

5.2.5.8 For each transaction type, all configured terminals of the tested systems must use the same target
Keying Time and the same target mean of Think Time. These times must comply with the requirements summarized
in Clause 5.2.5.7.

5.3 Response Time Definition

5.3.1 Each completed transaction submitted to the SUT must be individually timed.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 72 of 130

5.3.2 Response Times must be measured at the RTE. A Response Time (or RT) is defined by:

 RT = T2 - T1

where:

 T1 and T2 are measured at the RTE and defined as:

 T1 = timestamp taken before the last character of input data is entered by the emulated user.

 T2 = timestamp taken after the last character of output is received by the emulated terminal.

The resolution of the timestamps must be at least 0.1 seconds.

Comment: The intent of the benchmark is to measure response time as experienced by the emulated user.

5.3.3 The Menu Response Time (Menu RT) is the time between the timestamp taken before the last
character of the Menu selection has been entered and the timestamp taken after the last character of the
Input/Output Screen has been received (including clearing all input and output fields and displaying fixed fields,
see Clause 2).

Comment: Systems that do not require SUT/RTE interaction for the Menu selection and the screen display can
assume a null Menu RT.

5.3.4 The Transaction Response Time (Transaction RT) is the time between the timestamp taken before the
last character of the required input data has been sent from the RTE (see Clause 2) and the timestamp taken after the
last character of the required output data has been received by the RTE (see Clause 2) resulting from a transaction
execution.

Comment: If the emulated terminal must process the data being entered or displayed, the time for this processing
must be disclosed and taken into account when calculating the Transaction RT.

5.4 Computation of Throughput Rating

The TPC-C transaction mix represents a complete business cycle. It consists of multiple business transactions which
enter new orders, query the status of existing orders, deliver outstanding orders, enter payments from customers,
and monitor warehouse stock levels.

5.4.1 The metric used to report Maximum Qualified Throughput (MQTh) is a number of orders processed
per minute. It is a measure of "business throughput" rather than a transaction execution rate. It implicitly takes into
account all transactions in the mix as their individual throughput is controlled by the weighted Menu selection and
the minimum percentages of mix defined in Clause 5.2.3.

5.4.2 The reported MQTh is the total number of completed New-Order transactions (see Clause 5.1.2),
where the Transaction RT (see Clause 5.3.4) was completely measured at the RTE during the measurement interval,
divided by the elapsed time of the interval. New-Order transactions that rollback, as required by Clause 2.4.1.4, must
be included in the reported MQTh.

5.4.3 The name of the metric used to report the MQTh of the SUT is tpmC.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 73 of 130

5.4.4 All reported MQTh must be measured, rather than interpolated or extrapolated, and expressed to
exactly two decimal places, rounded to the hundredth place. For example, suppose 105.548 tpmC is measured on a
100 terminal test for which 90% of the New-Order transactions completed in less than 4.8 seconds and 117.572
tpmC is measured on a 110 terminal test for which 90% of the transactions completed in less than 5.2 seconds. Then
the reported tpmC is 105.54 rather than some interpolated value between 105.548 and 117.572.

5.5.1.6 To be valid, the measurement interval must contain no more than 1% or no more than one (1),
whichever is greater, of the Delivery transactions skipped because there were fewer than necessary orders present in
the New-Order table.

5.5 Measurement Interval Requirements

5.5.1 Steady State

5.5.1.1 The test must be conducted in a steady state condition that represents the true sustainable
throughput of the SUT.

5.5.1.2 Although the measurement interval may be as short as 120 minutes, the system under test must be
configured so that it is possible to run the test at the reported tpmC for a continuous period of at least eight hours,
maintaining full ACID properties. For example, the media used to store at least 8 hours of log data must be
configured if required to recover from any single point of failure (see Clause 3.5.3.1).

Comment 1: An example of a configuration that would not comply is one where a log file is allocated such that
better performance is achieved during the measured portion of the test than during the remaining portion of an eight
hour test, perhaps because a dedicated device was used initially but space on a shared device is used later in the full
eight hour test.

Comment 2: Steady state is easy to define (e.g., sustainable throughput) but difficult to prove. The test sponsor
(and/or the auditor) is required to report the method used to verify steady state sustainable throughput. The auditor
is encouraged to use available monitoring tools to help determine the steady state.

Comment 3: Some aspects of an implementation can result in systematic but small variations in sustained
throughput over an 8 hour period. The cumulative effect of such variations may be up to 2% of the reported
throughput. There is no requirement for an 8 hour run.

5.5.1.3 In the case where a ramp-up period is used to reach steady state, the properly scaled initial database
population is required at the beginning of the ramp up period. The transaction mix and the requirements
summarized in Clause 5.2.5.7 must be followed during the ramp-up as well as steady state period.

Comment: The intent of this clause is to prevent significant alteration to the properly scaled initial database
population during the ramp-up period.

5.5.1.4 A separate measurement to demonstrate reproducibility is not required.

5.5.1.5 While variability is allowed, the RTE cannot be artificially weighted to generate input data different
from the requirements described in Clauses 2.4.1, 2.5.1, 2.6.1, 2.7.1, and 2.8.1. To be valid, the input data generated
during a reported measurement interval must not exceed the following variability:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 74 of 130

1. At least 0.9% and at most 1.1% of the New-Order transactions must roll back as a result of an unused item
number.

2. The average number of order-lines per order must be in the range of 9.5 to 10.5 and the number of order-
lines per order must be uniformly distributed from 5 to 15 for the New-Order transactions that are
submitted to the SUT during the measurement interval.

3. The number of remote order-lines must be at least 0.95% and at most 1.05% of the number of order-lines
that are filled in by the New-Order transactions that are submitted to the SUT during the measurement
interval.

4. The number of remote Payment transactions must be at least 14% and at most 16% of the number of
Payment transactions that are submitted to the SUT during the measurement interval.

5. The number of customer selections by customer last name in the Payment transaction must be at least 57%
and at most 63% of the number of Payment transactions that are submitted to the SUT during the
measurement interval.

6. The number of customer selections by customer last name in the Order-Status transaction must be at least
57% and at most 63% of the number of Order-Status transactions that are submitted to the SUT during the
measurement interval.

5.5.1.6 To be valid, the measurement interval must contain no more than 1% or no more than one (1),
whichever is greater, of the Delivery transactions skipped because there were fewer than necessary orders present in
the New-Order table.

5.5.2 Duration

5.5.2.1 The measurement interval must:

1. Begin after the system reaches steady state.

2. Be long enough to generate reproducible throughput results which are representative of the performance
which would be achieved during a sustained eight hour period.

3. Extend uninterrupted for a minimum of 120 minutes.

5.5.2.2 Some systems do not write modified database records/pages to durable media at the time of
modification, but instead defer these writes. At some subsequent time, the modified records/pages are written to
make the durable copy current. This process is defined as a checkpoint in this document.

For systems which defer database write to durable media, it is a requirement that:

1. The time between check points (known as the Checkpoint Interval (CI)), must be less than or equal to 30
minutes.

 Comment: For systems which recover from instantaneous interruptions by applying recovery data to the
database stored on durable media, it is a requirement that no recovery data older than 30 minutes prior to
the interruption be used. The consequence of this requirement is that the database contents stored on
durable media cannot at any time during the Measurement Interval (MI) be more than 30 minutes older
than the most current state of the database (±5%).

2. All work required to perform a checkpoint must occur at least once before and at least four times during
the Measurement Interval. The start time and duration in seconds of at least the four longest checkpoints
during the Measurement Interval must be disclosed.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 75 of 130

3. The Checkpoint Interval must be less than or equal to the Measurement Interval. If the Checkpoint
Interval is less than the Measurement Interval, the Measurement Interval must be an integral multiple of
the Checkpoint Interval.

5.6 Required Reporting

5.6.1 The frequency distribution of response times of all transactions, started and completed during the
measurement interval, must be reported independently for each of the five transaction types (i.e., New-Order,
Payment, Order-Status, Delivery, and Stock-Level). The x-axis represents the transaction RT and must range from 0
to four times the measured 90th percentile RT (N) for that transaction. The y-axis represents the frequency of the
transactions at a given RT. At least 20 different intervals, of equal length, must be reported. The maximum, average,
and 90th percentile response times must also be reported. An example of such a graph is shown below.

0 N 4N

Number of
Transactions

Response Time (sec.)

Average Response Time

90th Percentile
Response Time

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 76 of 130

5.6.2 A graph of response times versus throughput for the New-Order transaction, run within the mix
required in Clause 5.2.3, must be reported. The x-axis represents the measured New-Order throughput. The y-axis
represents the corresponding 90th percentile of response times. A graph must be plotted at approximately 50%, 80%,
and 100% of reported throughput rate (additional data points are optional). The 50% and 80% data points are to be
measured on the same configuration as the 100% run, for a minimum interval of 20 minutes, varying either the
Think Time of one or more transaction types or the number of active terminals. Interpolation of the graph between
these data points is permitted. Deviations from the required transaction mix are permitted for the 50% and 80% data
points. An example of such a graph is shown below.

5sec.

90th Percentile
Response Time

0 50% 80% 100%

Reported MQTh

MQTh

5.6.3 The frequency distribution of Think Times for the New-Order transaction, started and completed
during the measurement interval, must be reported. The x-axis represents the Think Time and must range from 0 to
four times the actual mean of Think Time for that transaction. The y-axis represents the frequency of the transactions
with a given Think Time. At least 20 different intervals, of equal length, must be reported. The mean Think Time
must also be reported. An example of such a graph is shown below.

0

T
hi

nk
 T

im
e

F
re

qu
en

cy

Think Time (sec.)

Mean Think Time

12.5 50

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 77 of 130

5.6.4 A graph of the throughput of the New-Order transaction versus elapsed time (i.e., wall clock) must be
reported for both ramp-up time and measurement interval. The x-axis represents the elapsed time from the start of
the run. The y-axis represents the throughput in tpmC. At least 240 different intervals should be used with a
maximum interval size of 30 seconds. The opening and the closing of the measurement interval must also be
reported and shown on the graph. The start time for each of the checkpoints must be indicated on the graph. An
example of such a graph is shown below.

0

MQTh

Elapsed Time (sec.)

Measurement Interval

Open Close

5.7 Primary Metrics

5.7.1 To be compliant with the TPC-C standard and the TPC’s Fair Use Policies and Guidelines, all public
references to TPC-C results for a configuration must include the following components which will be
known as the Primary Metrics.

?? The TPC-C Maximum Qualified Throughput (MQTh) rating expressed in tpmC. This is known as the
Performance Metric. (See Clause 5.4.)

?? The TPC-C total 3-year pricing divided by the MQTh and expressed as price/tpmC. This is also known
as the Price/Performance metric. (See Clause 7.4.)

?? The date when all products necessary to achieve the stated performance will be available (stated as a
single date on the executive summary). This is known as the availability date. (See Clause 8.1.8.3.)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 78 of 130

Clause 6: SUT, DRIVER, and COMMUNICATIONS DEFINITION

6.1 Models of the Target System

Some examples of a system which represents the target (object) of this benchmark are shown pictorially below. By
way of illustration, the figures also depict the RTE/SUT boundary (see Clauses 6.3 and 6.4) where the response time
is measured.

Example 2

WS - S
Network*

SUTRTE

wsK/D

 *

K/D ws

S - S
Network*

Server System(s)

S
E
R
V
E
R

Legend: C = Client
K/D = Keyboard/Display
RTE = Remote Terminal Emulator
S = Server
SUT = System Under Test
T = Terminal
WS = Workstation
* = Optional

Response Time Measured Here

SUT

Example 1

T
Network*

RTE

T

T

Terminal Network

S - S
Network*

SUT

S
E
R
V
E
R

Server System(s)

Example 3

RTE

T

T

Terminal Network

T
Network*

C - S
Network*

SUT

Client System(s)

C
L
I
E
N
T

*

S
E
R
V
E
R

Server System(s)

S - S
Network*

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 79 of 130

6.2 Test Configuration

The test configuration consists of the following elements:

• System Under Test (SUT)

• Driver System(s)

• Driver/SUT Communications Interface(s)

If one of the networks is a WAN, the tested configurations need not include the WAN long-haul communications
lines.

6.3 System Under Test (SUT) Definition

6.3.1 The SUT consists of:

• One or more processing units (e.g., host, front-ends, workstations, etc.) which will run the transaction mix
described in Clause 5.2.3, and whose aggregate performance (total Maximum Qualified Throughput) will be
described by the metric tpmC.

• Any front-end systems are considered to be part of the SUT. Examples of front-end systems are front-end data
communication processors, cluster controllers, database clients (as in the client/server model), and
workstations.

• The host system(s), including hardware and software, supporting the database employed in the benchmark.

• The hardware and software components of all networks required to connect and support the SUT
components.

• Data storage media sufficient to satisfy both the scaling requirements in Clause 4.2 and the ACID properties
of Clause 3.

6.3.2 A single benchmark result may be used for multiple SUTs provided the following conditions are met:

• Each SUT must have the same hardware and software architecture and configuration.

• The only exception allowed are for elements not involved in the processing logic of the SUT (e.g., number of
peripheral slots, power supply, cabinetry, fans, etc.)

• Each SUT must support the priced configuration.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 80 of 130

6.4 Driver Definition

6.4.1 An external Driver System(s), which provides Remote Terminal Emulator (RTE) functionality, must be
used to emulate the target terminal population and their emulated users during the benchmark run.

6.4.2 The RTE performs the following functions:

• Emulates a user entering input data on the input/output screen of an emulated terminal by generating and
sending transactional messages to the SUT;

• Emulates a terminal displaying output messages on an input/output screen by receiving response messages
from the SUT;

• Records response times;

• Performs conversion and/or multiplexing into the communications protocol used by the communications
interface between the driver and the SUT ;

• Performs statistical accounting (e.g., 90th percentile response time measurement, throughput calculation, etc.)
is also considered an RTE function.

6.4.3 Normally, the Driver System is expected to perform RTE functions only. Work done on the Driver
System in addition to the RTE as specified in Clause 6.4.2 must be thoroughly justified as specified in Clause 6.6.3.

6.4.4 The intent is that the Driver System must reflect the proposed terminal configuration and cannot add
functionality or performance above the priced network components in the SUT. It must be demonstrated that
performance results are not enhanced by using a Driver System.

6.4.5 Software or hardware which resides on the Driver which is not the RTE is to be considered as part of
the SUT. For example, in a "client/server" model, the client software may be run or be simulated on the Driver
System (see Clause 6.6.3).

6.5 Communications Interface Definitions

6.5.1 I/O Channel Connections

6.5.1.1 All protocols used must be commercially available.

Comment: It is the intention of this definition to exclude non-standard I/O channel connections. The following
situations are examples of acceptable channel connections:

• Configurations or architectures where terminals or terminal controllers are normally and routinely connected
to an I/O channel of a processor.

• Where the processor(s) in the SUT is/are connected to the local communications network via a front-end
processor, which is channel connected. The front-end processor is priced as part of the SUT.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 81 of 130

6.5.2 Driver/SUT Communications Interface

6.5.2.1 The communications interface between the Driver System(s) and the SUT must be the mechanism by
which the system would be connected with the terminal (see Clause 2.1.8) in the proposed configuration.

6.6 Further Requirements on the SUT and Driver System

6.6.1 Restrictions on Driver System

Copies of any part of the tested database or file system or its data structures, indices, etc. may not be present on the
Driver System during the test.

Comment: Synchronization between RTE and SUT is disallowed.

6.6.2 Individual Contexts for Emulated Terminals

The SUT must contain context for each terminal emulated, and must maintain that context for the duration of that
test. That context must be identical to the one which would support a real terminal. A terminal which sends a
transaction cannot send another until the completion of that transaction, with the exception of the deferred
execution of the Delivery transaction.

Comment: The context referred to in this clause should consist of information such as terminal identification,
network identification, and other information necessary for a real terminal to be known to (i.e., configured on) the
SUT. The intention is to allow pseudo-conversational transactions. The intent of this clause is simply to prevent a
test sponsor from multiplexing messages from a very large number of emulated terminals into a few input lines and
claiming or implying that the tested system supports that number of users regardless of whether the system actually
supports that number of real terminals. It is allowable for a terminal to lose its connection to the SUT during the
Measurement Interval as long as its context is not lost and it is reconnected within 90 seconds using the same
context. The loss and re-entry of a user must be logged and the total number reported.

6.6.3 Driver System Doing More Than RTE Function

In the event that a Driver System must be used to emulate additional functionality other than that described in
Clause 6.4, then this must be justified as follows:

6.6.3.1 It must be demonstrated that the architecture of the proposed solution makes it uneconomical to
perform the benchmark without performing the work in question on the driver (e.g., in a "client/server" database
implementation, where the client software would run on a large number of workstations).

6.6.3.2 Rule 6.6.1 must not be violated.

6.6.3.3 It must be demonstrated that executables placed on the Driver System are functionally equivalent to
those on the proposed (target) system.

6.6.3.4 It must be demonstrated that performance results are not enhanced by performing the work in
question on the Driver System. The intent is that a test should be run to demonstrate that the functionality,
performance, and connectivity of the emulated solution is the same as that for the priced system. These test data
must be included in the Full Disclosure Report.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 82 of 130

For example, if the Driver System emulates the function of a terminal concentrator, there must be test data to
demonstrate that a real concentrator configured with the claimed number of attached devices would deliver the
same (or better) response time as is measured with the Driver System. The terminal concentrator must be configured
as it would be in the priced system and loaded to the maximum number of lines used in the priced configuration.
The demonstration test must be run as part of the SUT configuration that is running a full load on a properly scaled
database. The following diagram illustrates the configuration of a possible demonstration test:

RTE RTE

Terminal
Concentrator

SUT

Side-A Side-B

In the above example, the difference in the measured response time between Side-A and Side-B should be less than
or equal to any adjustments to the response time reported in the Full Disclosure Report.

If the response time delay generated from a demonstration test is to be used in multiple benchmark tests, the
demonstration must be performed on a SUT generating the highest tpmC rate on the terminal concentrator.

6.6.3.5 Individual contexts must continue to be maintained from the RTE through to the SUT.

6.6.3.6 A complete functional diagram of both the benchmark configuration and the configuration of the
proposed (target) system must be disclosed. A detailed list of all software and hardware functionality being
performed on the Driver System, and its interface to the SUT, must be disclosed.

6.6.3.7 When emulating end-user devices utilizing a web browser, the implementator shall include a 0.1
second response time delay in the emulation to compensate for the delay encountered in the proposed end-to-end
configuration for the browser delay.

Comment: The use of a measured delay is not allowed on this non-priced component.

6.6.4 Disclosure of Network Configuration and Emulated Portions

The test sponsor shall describe completely the network configurations of both the tested services and the proposed
real (target) services which are being represented. A thorough explanation of exactly which parts of the proposed
configuration are being replaced by the Driver System must be given.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 83 of 130

6.6.5 Limits on Concentration

The level of concentration of messages between the Driver System(s) and the SUT in the benchmark configuration
must not exceed that which would occur in the proposed (target) configuration. In particular, the number of
communications packets which can be concentrated must not exceed the number of terminals which would be
directly connected to that concentrator in the proposed configuration.

Comment: The intent is to allow only first level concentration on the RTE, but does not preclude additional levels of
concentration on the SUT.

6.6.6 Limits on Operator Intervention

Systems which require operator intervention during normal operations to sustain the reported throughput for an
eight hour period are allowed provided that the following conditions are met:

• The need for operator intervention must be disclosed in the Full Disclosure Report. The report must describe
the functions performed by the operator and the frequency of this activity.

• The mechanism by which the system indicates that operator intervention is needed must be described. This
mechanism must be provided by commercially available hardware and software and be included in the SUT
pricing.

• Any event (or combination of events) which require operator intervention must allow at least 30 minutes for
the operator to respond before the event could affect system performance.

Comment: The intent of this clause is to restrict the extent of operator intervention during normal operations of the
system to a reasonable level. Because of the critical, on-line nature the modeled application, a system which depends
on rapid operator intervention to maintain throughput is not allowed.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 84 of 130

Clause 7: PRICING

7.1 Pricing Methodology

7.1.1 The intent of this section is to define the methodology to be used in calculating the 3-year pricing and
the price/performance (price/tpmC). The fundamental premise is that what is tested and/or emulated is priced and
what is priced is tested and/or emulated. Exceptions to this premise are noted below.

7.1.2 The proposed system to be priced is the aggregation of the SUT and network components that would
be offered to achieve the reported performance level. Calculation of the priced system consists of:

• Price of the SUT as tested and defined in Clause 6. This excludes terminals and the terminal network (see
Clause 6.1).

• Price of all emulated components excluding terminals and the terminal network (see Clause 6.1).

• Price of on-line storage for the database population, 8 hours of processing at the reported tpmC, data
generated by 60 8-hour days of processing at the reported tpmC, and the system software necessary to create,
operate, administer, and maintain the application.

• Price of additional products that are required for the operation, administration or maintenance of the priced
system.

• Price of additional products required for application development.

7.1.3 The following pricing methodology must be used:

• All hardware and software used in the calculations must be orderable by customers from the day of
publication. For any product not already generally released, the Full Disclosure Report must include a
committed general delivery date (see Clause 8.1.8). That date must not exceed 6 months beyond the Full
Disclosure Report submittal date. All software used in the calculations must be either orderable by
customers from the day of publication, or the sponsor must disclose the availability date and the means for
obtaining the item by the availability date. If the item is from a third-party, this information must be included
on the price quote.

• Generally available discounts for the priced configuration are permissible.

• Generally available packaged pricing is acceptable.

• Local retail pricing and discount structure should be used in each country for which results are published.

• Price should be represented by the currency with which the customer would purchase the system.

• All hardware components used in the priced system must be new (i.e., not reconditioned or previously
owned).

• For test sponsor(s) who have only indirect sales channels, pricing must be actual generally available pricing
from indirect channels which meet all other requirements of Clause 7.

• Terminals and the terminal network (see diagram in Clause 6.1) are excluded from the priced system. For
end-user devices providing more function, monitors and keyboards need not be priced if capable of being
priced separately.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 85 of 130

• Prices should be shown as whole integer amounts (e.g., dollars but not cents). All fractional amounts should
be rounded up to the nearest integer value.

Comment 1: The intent of the pricing methodology is to allow packaging and pricing that is generally available to
customers and to explicitly exclude promotional and/or limited availability offerings.

Comment 2: Revenue discounts based on total price are permissible. Any discount must be only for the
configuration being priced and cannot be based on past or future purchases. Individually negotiated discounts are
not permitted. Special customer discounts (e.g. GSA schedule, educational schedule) are not permitted.

Comment 3: The intent is to benchmark the actual system which the customer would purchase. However, it is
realized that vendors may announce new products and disclose benchmark results before the products have
actually shipped. This is allowed, but any use of one-of-a-kind hardware/software configurations, which the
vendor does not intend to ship in the future is specifically excluded. All products, including terminals, must be
generally available in the country where the SUT is priced.

7.1.4 The test sponsor(s) must disclose all pricing sources and effective date(s) of the prices.

7.1.5 The sponsor is required to state explicitly all the items and services which are not directly available
through the sponsor. Each suppliers items and prices, including discounts, must be listed separately. Discounts
may not be dependent on purchases from any other suppliers.

7.1.6 Third-party pricing: In the event that any hardware, software, or maintenance is provided by a third
party not involved as a sponsor of the benchmark, the pricing must satisfy all requirements for general availability,
standard volume discounts, and full disclosure. Furthermore, any pricing which is not directly offered by the test
sponsor(s) and not derived from the third party vendor's generally available pricing and discounts must be
guaranteed by the third party in a written price quotation for a period not less than 20 days from the date the results
are submitted. This written quotation must be included in the Full Disclosure Report and state that the quoted prices
are generally available, the time period for which the prices are valid, the basis of all discounts, and any terms and
conditions which may apply to the quoted prices. The test sponsor must still comply with price changes as
described in Clause 8.3.

Comment 1: The intent of this clause is to allow obtaining 30 day quotes within 10 days prior to submission of the
result.

Comment 2: For items provided by a vendor who is not a sponsor of the benchmark the requirement for a written
price quotation from the vendor can be replaced by including in the FDR a copy of the source document from which
the price was obtained (.e.g, printed advertisement or on-line catalogue page). The aggregate price of all items priced
in this manner cannot exceed 5% of the 3 year Price (verified by the Auditor). Items priced using this method are not
subject to the written price quote time guarantee defined above.

7.1.7 Pricing shown in the Full Disclosure Report must reflect line item pricing for hardware, software, and
maintenance from the vendor's price books.

Comment: The intent of this clause is that the pricing reflect the level of detail that an actual customer would see on
an itemized billing. The pricing excludes domestic taxes and shipping charges that would be incurred in the
country for which the results are published. It is not intended to exclude tariffs, custom duties/fees, and shipping to
a domestic port of entry if the component originates in another country.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 86 of 130

7.1.8 For publishing in another country other than the country for which the results are originally
published, it is permitted to substitute local components from the original report providing the substituted products
are sold to the same product description or specifications.

Comment: The intent of this clause is to encourage local country pricing by allowing substitution of equipment for
country specific reasons such as voltage, product numbering, industrial/safety, keyboard differences, etc., which do
not affect performance.

7.1.9 Customer spareable and replaceable hardware items are acceptable under the following conditions:

1. They must be generally available as spareable and replaceable for any customer installation.

2. Its designation as spareable and replaceable cannot depend on a threshold of purchased quantity.

3. It must be verifiable that diagnosis of the spareable and replaceable item as having failed can be positively
accomplished by the customer within 4 hours of failure.

4. The method for diagnosis and replacement must have complete customer documentation.

Comment: Diagnosis may take the form of a hardware indicator or a diagnosis procedure. The intent is that the
diagnosis must reach a positive conclusion as to the state of the item within 4 hours.

7.2 Priced System

7.2.1 SUT

The entire price of the SUT as configured during the test must be used, including all hardware (new purchase price),
software (license charges) and hardware/software maintenance charges over a period of 3 years (36 months).

Comment 1: The intent is to price the tested system at the full price a customer would pay. Specifically prohibited
are the assumption of other purchases, other sites with similar systems, or any other assumption which relies on the
principle that the customer has made any other purchase from the vendor. This is a one time, stand-alone purchase.

Comment 2: The number of users for TPC-C is defined to be equal to the number of terminals emulated in the tested
configuration. Any usage pricing for the above number of users should be based on the pricing policy of the
company supplying the priced component.

7.2.2 Terminals and Network Pricing

7.2.2.1 The price of the Driver System is not included in the calculation. In the case where the Driver System
provide functionality in addition to the RTE described in Clause 6, then the price of the emulated
hardware/software components are to be included, except terminals and the terminal network.

7.2.2.2 The terminals must be commercially available products capable of entering via a keyboard all
alphabetic and numeric characters and capable of displaying simultaneously the data and the fields described in
Clause 2.

7.2.2.3 For WAN configurations, the number of devices to be connected to a single line must be no greater
than that emulated per Clause 6.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 87 of 130

7.2.3 Database Storage and Recovery Log Pricing

7.2.3.1 Within the priced system, there must be sufficient on-line storage to support any expanding system
files and the durable database population resulting from executing the TPC-C transaction mix for 60 eight-hour
days at the reported tpmC (see Clause 4.2.3). Storage is considered on-line, if any record can be accessed randomly
and updated within 1 second. On-line storage may include magnetic disks, optical disks, or any combination of
these, provided that the above mentioned access criteria is met.

Comment 1 : The intent of this clause is to consider as on-line any storage device capable of providing an access time
to data, for random read or update, of one second or less, even if this access time requires the creation of a logical
access path not present in the tested database. For example, a disk based sequential file might require the creation of
an index to satisfy the access time requirement.

Comment 2: During the execution of the TPC-C transaction mix, the ORDER, NEW-ORDER, ORDER-LINE, and
HISTORY tables grow beyond the initial database population requirements of the benchmark as specified in Clause
4. Because these tables grow naturally, it is intended that 60 days of growth beyond the specified initial database
population also be taken into account when pricing the system.

7.2.3.2 Recovery data must be maintained in such a way that the published tpmC transaction rate could be
sustained for an 8-hour period. Roll-back recovery data must be either in memory or in on-line storage at least until
transactions are committed. Roll-forward recovery data may be stored on an off-line device, providing the following:

• The process which stores the roll-forward data is active during the measurement interval.

• The roll-forward data which is stored off-line during the measurement interval (see Clause 5.5) must be at
least as great as the roll-forward recovery data that is generated during the period (i.e., the data may be first
created in on-line storage and then moved to off-line storage, but the creation and the movement of the data
must be in steady state).

• All ACID properties must be retained.

7.2.3.3 It is permissible to not have the storage required for the 60-day space on the tested system. However,
any additional storage device included in the priced system but not configured on the tested system must be of the
type(s) actually used during the test and must satisfy normal system configuration rules.

Comment: Storage devices are considered to be of the same type if they are identical in all aspects of their product
description and technical specifications.

7.2.3.4 The requirement to support eight hours of recovery log data can be met with storage on any durable
media (see Clause 3.5.1) if all data required for recovery from failures listed in Clauses 3.5.3.2 and 3.5.3.3 are on-line.

7.2.4 Additional Operational Components

7.2.4.1 Additional products that might be included on a customer installed configuration, such as operator
consoles and magnetic tape drives, are also to be included in the priced system if explicitly required for the
operation, administration, or maintenance, of the priced system.

7.2.4.2 Copies of the software, on appropriate media, and a software load device, if required for initial load or
maintenance updates, must be included.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 88 of 130

7.2.4.3 The price of an Uninterruptible Power Supply, specifically contributing to a durability solution, must
be included (see Clause 3.5.1).

7.2.4.4 The price of all components, including cables, used to interconnect components of the SUT must be
included.

7.2.5 Additional Software

7.2.5.1 The price must include the software licenses necessary to create, compile, link, and execute this
benchmark application as well as all run-time licenses required to execute on host system(s), client system(s) and
connected workstation(s) if used.

7.2.5.2 In the event the application program is developed on a system other than the SUT, the price of that
system and any compilers and other software used must also be included as part of the priced system.

7.3 Maintenance

7.3.1 Hardware and software maintenance must be figured at a standard pricing which provides 7
days/week, 24 hours/day coverage, either on-site, or if available as standard offering, via a central support facility.
Hardware maintenance maximum response time must not exceed 4 hours, on any part whose replacement is
necessary for the resumption of operation.

Comment 1: Resumption of operation means the priced system must be returned to the same configuration that was
present before the failure.

Comment 2: The intent of hardware maintenance pricing is not met by pricing based on the cost to fix specific
failures, even if the failure rate is calculated from Mean Time Between Failure (MTBF). The maintenance pricing
must be independent of actual failure rates over the 3-year period, no matter how many failures occur during that
period. The intent is to preclude the use of MTBF to directly compute the maintenance cost for this benchmark.

7.3.2 If central support is claimed, then the appropriate connection device, such as auto-dial modem must
be included in the hardware price. Also any software required to run the connection to the central support, as well
as any diagnostic software which the central support facility requires to be resident on the tested system, must not
only be included in pricing, but must also be installed during the benchmark runs.

7.3.3 Software maintenance must include maintenance update distribution for both the software and its
documentation. If software maintenance updates are separately priced, then pricing must include at least 2 updates
over the 3-year period.

Comment: Software maintenance, as defined above, means a standard offering which includes acknowledgment of
new and existing problems within 4 hours and a commitment to fix defects within a reasonable time.

7.3.4 It is acceptable to incorporate, for pricing purposes, the use of customer spareable and replaceable
hardware items under the following conditions:

1. The conditions of Clause 7.1.9 must be met.

2. For spares to meet the maintenance requirements of a site, an additional 10% of the designated items, with
a minimum of 2, must be priced.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 89 of 130

3. The vendor must price a support service which targets replenishment on-site within 7 days throughout
the 3-year maintenance period.

Comment: The use of spares is intended to assist in complying with the four-hour maximum hardware
maintenance response requirement. It is not intended as a substitute for maintenance support of the priced
configuration. Additionally, the priced configuration must maintain the same quantities of components, including
spares, for three years. This requirement necessitates maintenance for the spares to ensure replenishment.

7.4 Required Reporting

7.4.1 Two metrics will be reported with regard to pricing. The first is the total 3-year pricing as described in
the previous clauses. The second is the total 3-year pricing divided by the reported Maximum Qualified Throughput
(tpmC), as defined in Clause 5.4.

7.4.2 The 3-year pricing metric must be fully reported in the basic monetary unit of the local currency (see
Clause 7.1.3) rounded up and the price/performance metric must be reported to a minimum precision of three
significant digits rounded up. Neither metric may be interpolated or extrapolated. For example, if the total price is
US$ 5,734,417.89 and the reported throughput is 105 tpmC, then the 3-year pricing is US$ 5,734,418 and the
price/performance is US$ 54,700/tpmC (5,734,418/105).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 90 of 130

Clause 8: FULL DISCLOSURE

8.1 Full Disclosure Report Requirements

A Full Disclosure report is required in order for results to be considered compliant with the TPC-C benchmark
specification.

Comment: The intent of this disclosure is for a customer to be able to replicate the results of this benchmark given
the appropriate documentation and products.

This section includes a list of requirements for the Full Disclosure report.

8.1.1 General Items

8.1.1.1 The order and titles of sections in the Test Sponsor’s Full Disclosure report must correspond with the
order and titles of sections from the TPC-C standard specification (i.e., this document). The intent is to make it as
easy as possible for readers to compare and contrast material in different Full Disclosure reports.

8.1.1.2 The TPC Executive Summary Statement must be included near the beginning of the Full Disclosure
report. An example of the Executive Summary Statement is presented in Appendix B. The latest version of the
required format is available from the TPC Administrator.

8.1.1.3 The numerical quantities listed below must be summarized near the beginning of the Full Disclosure
report :

• measurement interval in minutes,

• number of checkpoints in the measurement interval,

• checkpoint interval in minutes,

• number of transactions (all types) completed within the measurement interval,

• computed Maximum Qualified Throughput in tpmC,

• ninetieth percentile, average and maximum response times for the New-Order, Payment, Order-Status, Stock-
Level, Delivery (deferred and interactive) and Menu transactions,

• time in seconds added to response time to compensate for delays associated with emulated components,

• percentage of transaction mix for each transaction type.

Comment: Appendix C contains an example of such a summary. The intent is for data to be conveniently and easily
accessible in a familiar arrangement and style. It is not required to precisely mimic the layout shown in Appendix C.

8.1.1.4 The application program (as defined in Clause 2.1.7) must be disclosed. This includes, but is not
limited to, the code implementing the five transactions and the terminal input and output functions.

8.1.1.5 A statement identifying the benchmark sponsor(s) and other participating companies must be
provided.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 91 of 130

8.1.1.6 Settings must be provided for all customer-tunable parameters and options which have been changed
from the defaults found in actual products, including but not limited to:

• Database tuning options.

• Recovery/commit options.

• Consistency/locking options.

• Operating system and application configuration parameters.

• Compilation and linkage options and run-time optimizations used to create/install applications, OS, and/or
databases.

Comment 1 : This requirement can be satisfied by providing a full list of all parameters and options.

Comment 2: The intent of the above clause is that anyone attempting to recreate the benchmark environment has
sufficient information to compile, link, optimize, and execute all software used to produce the disclosed benchmark
result.

8.1.1.7 Diagrams of both measured and priced configurations must be provided, accompanied by a
description of the differences. This includes, but is not limited to:

• Number and type of processors.

• Size of allocated memory, and any specific mapping/partitioning of memory unique to the test.

• Number and type of disk units (and controllers, if applicable).

• Number of channels or bus connections to disk units, including their protocol type.

• Number of LAN (e.g., Ethernet) connections, including routers, workstations, terminals, etc., that were
physically used in the test or are incorporated into the pricing structure (see Clause 8.1.8).

• Type and the run-time execution location of software components (e.g., DBMS, client processes, transaction
monitors, software drivers, etc.).

Comment: Detailed diagrams for system configurations and architectures can widely vary, and it is impossible to
provide exact guidelines suitable for all implementations. The intent here is to describe the system components and
connections in sufficient detail to allow independent reconstruction of the measurement environment.

The following sample diagram illustrates a workstation/router/server benchmark (measured) configuration using
Ethernet and a single processor. Note that this diagram does not depict or imply any optimal configuration for the
TPC-C benchmark measurement.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 92 of 130

C
oncentrator

C
oncentrator

C
oncentrator

CPU

128Mbytes

4 I/O cards

1 Ethernet
adapter

16 1.2 Gbyte Disk Units

Model xxx

Concentrators: System_WW with 10 diskless workstations each
LAN: Ethernet using NET_XX routers
CPU: Model_YY with 128 Mbytes of main memory, 4 I/O cards with SCSI II protocol support
Disk: Vendor_ZZ 1.2 Gbyte drives

8.1.2 Clause 1 Logical Database Design Related Items:

8.1.2.1 Listings must be provided for all table definition statements and all other statements used to set-up
the database.

8.1.2.2 The physical organization of tables and indices, within the database, must be disclosed.

Comment: The concept of physical organization includes, but is not limited to: record clustering (i.e., rows from
different logical tables are co-located on the same physical data page), index clustering (i.e., rows and leaf nodes of
an index to these rows are co-located on the same physical data page), and partial fill-factors (i.e., physical data
pages are left partially empty even though additional rows are available to fill them).

8.1.2.3 It must be ascertained that insert and/or delete operations to any of the tables can occur concurrently
with the TPC-C transaction mix. Furthermore, any restriction in the SUT database implementation that precludes
inserts beyond the limits defined in Clause 1.4.11 must be disclosed. This includes the maximum number of rows
that can be inserted and the maximum key value for these new rows.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 93 of 130

8.1.2.4 While there are a few restrictions placed upon horizontal or vertical partitioning of tables and rows in
the TPC-C benchmark (see Clause 1.6), any such partitioning must be disclosed. Using the CUSTOMER table as an
example, such partitioning could be denoted as:

 C_part_1 C_ID
 C_D_ID
 C_W_ID
 ------------------------ vertical partition----------------
 C_part_2 C_FIRST
 C_MIDDLE
 C_LAST
 C_STREET_1
 C_STREET_2
 C_CITY
 C_STATE
 C_ZIP
 C_PHONE
 C_SINCE
 ------------------------ vertical partition----------------
 C_part_3 C_CREDIT
 C_CREDIT_LIM
 C_DISCOUNT
 C_BALANCE
 C_YTD_PAYMENT
 C_PAYMENT_CNT
 C_DELIVERY_CNT
 ------------------------ vertical partition----------------
 C_part_4 C_DATA

Once the partitioned database elements have been so identified, they can be referred to by, for example, their
T_part_N notation when describing the physical allocation of database files (see Clause 8.1.5), where T indicates
the table name and N indicates the partition segment number.

8.1.2.5 Replication of tables, if used, must be disclosed (see Clause 1.4.6).

8.1.2.6 Additional and/or duplicated attributes in any table must be disclosed along with a statement on the
impact on performance (see Clause 1.4.7).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 94 of 130

8.1.3 Clause 2 Transaction and Terminal Profiles Related Items

8.1.3.1 The method of verification for the random number generation must be described.

8.1.3.2 The actual layouts of the terminal input/output screens must be disclosed.

8.1.3.3 The method used to verify that the emulated terminals provide all the features described in Clause
2.2.2.4 must be explained. Although not specifically priced, the type and model of the terminals used for the
demonstration in 8.1.3.3 must be disclosed and commercially available (including supporting software and
maintenance).

8.1.3.4 Any usage of presentation managers or intelligent terminals must be explained.

Comment 1: The intent of this clause is to describe any special manipulations performed by a local terminal or
workstation to off-load work from the SUT. This includes, but is not limited to: screen presentations, message
bundling, and local storage of TPC-C rows.

Comment 2: This disclosure also requires that all data manipulation functions performed by the local terminal to
provide navigational aids for transaction(s) must also be described. Within this disclosure, the purpose of such
additional function(s) must be explained.

8.1.3.5 The percentage of home and remote order-lines in the New-Order transactions must be disclosed.

8.1.3.6 The percentage of New-Order transactions that were rolled back as a result of an unused item number
must be disclosed.

8.1.3.7 The number of items per orders entered by New-Order transactions must be disclosed.

8.1.3.8 The percentage of home and remote Payment transactions must be disclosed.

8.1.3.9 The percentage of Payment and Order-Status transactions that used non-primary key (C_LAST)
access to the database must be disclosed.

8.1.3.10 The percentage of Delivery transactions that were skipped as a result of an insufficient number of
rows in the NEW-ORDER table must be disclosed.

8.1.3.11 The mix (i.e., percentages) of transaction types seen by the SUT must be disclosed.

8.1.3.12 The queuing mechanism used to defer the execution of the Delivery transaction must be disclosed.

8.1.4 Clause 3 Transaction and System Properties Related Items

8.1.4.1 The results of the ACID tests must be disclosed along with a description of how the ACID
requirements were met. This includes disclosing which case was followed for the execution of Isolation Test 7.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 95 of 130

8.1.5 Clause 4 Scaling and Database Population Related Items

8.1.5.1 The cardinality (e.g., the number of rows) of each table, as it existed at the start of the benchmark run
(see Clause 4.2), must be disclosed. If the database was over-scaled and inactive rows of the WAREHOUSE table
were deleted (see Clause 4.2.2), the cardinality of the WAREHOUSE table as initially configured and the number of
rows deleted must be disclosed.

8.1.5.2 The distribution of tables and logs across all media must be explicitly depicted for the tested and
priced systems.

CPU

Disk name: WDC01

For each disk WDC01 to WDC05
20% of each WAREHOUSE, DISTRICT, CUSTOMER,
NEW_ORDER, ORDER, ORDER-LINE, ITEM and STOCK
database tables and indexes

Disk name: WDC05

Disk name: HIST01
History 100%

Disk name: LOG01
Physical log: 100%
Logical log: 100%

Disk name: LOG02
Logical log: 100%
(mirrored w/LOG01)

Two additional volumes were used

Operating system root disk
Operating system user disk

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 96 of 130

root /usr

page1
10% of
WAREHOUSE
CUSTOMER
DISTRICT
NEW_ORDER
ORDER
ORDER_LINE
tables

db01

db02

db03

db04

db05

db06

db07

db08

db09

db10

ITEM
STOCK
tables
100%

physical
log file
100%

10%

10%

10%

10%

10%

10%

10%

10%

10%

HISTORY
file
100%

System
page
volume

Operating
System
root
volume

Operating
System
/user
files

CPU

hist

log item

Comment: Detailed diagrams for layout of database files on disks can widely vary, and it is difficult to provide exact
guideline suitable for all implementations. The intent is to provide sufficient detail to allow independent
reconstruction of the test database. The two figures below are examples of database layout descriptions and are not
intended to depict or imply any optimal layout for the TPC-C database.

8.1.5.3 A statement must be provided that describes:

1. The data model implemented by the DBMS used (e.g., relational, network, hierarchical)

2. The database interface (e.g., embedded, call level) and access language (e.g., SQL, DL/1, COBOL read/write)
used to implement the TPC-C transactions. If more than one interface/access language is used to implement
TPC-C, each interface/access language must be described and a list of which interface/access language is
used with which transaction type must be disclosed.

8.1.5.4 The mapping of database partitions/replications must be explicitly described.

Comment: The intent is to provide sufficient detail about partitioning and replication to allow independent
reconstruction of the test database.

An description of a database partitioning scheme is presented below as an example. The nomenclature of this
example was outlined using the CUSTOMER table (in Clause 8.1.2.1), and has been extended to use the ORDER and
ORDER_LINE tables as well.

C_part_1 C_ID O_part_1 O_ID OL_part_1 OL_O_ID
 C_D_ID O_D_ID OL_D_ID
 C_W_ID O_W_ID OL_W_ID
--------- partition------- O_C_ID OL_NUMBER

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 97 of 130

C_part_2 C_FIRST ----------- partition------- OL_I_ID
 C_MIDDLE O_part_2 O_ENTRY_D ----------- partition-------
 C_LAST O_OL_CNT OL_part_2 OL_SUPPLY_W_ID
 C_STREET_1 ----------- partition------- OL_DELIVERY_D
 C_STREET_2 O_part_3 O_CARRIER_ID OL_QUANTITY
 C_CITY O_ALL_LOCAL OL_AMOUNT
 C_STATE ----------- partition-------
 C_ZIP OL_part_3 OL_DIST_INFO
 C_PHONE
 C_SINCE
----------partition-------
C_part_3 C_CREDIT
 C_CREDIT_LIM
 C_DISCOUNT
 C_BALANCE
 C_YTD_PAYMENT
 C_PAYMENT_CNT
 C_DELIVERY_CNT
----------partition-------
C_part_4 C_DATA

C_part_1

C_part_2
C_part_4

C_part_3

O_part_2O_part_1
OL_part_1 OL_part_2

O_part_3
OL_part_3

One WAREHOUSE Customer/Order/Order_line "cell"

8.1.5.5 Details of the 60-day space computations along with proof that the database is configured to sustain
8 hours of growth for the dynamic tables (Order, Order-Line, and History) must be disclosed (see Clause 4.2.3).

8.1.6 Clause 5 Performance Metrics and Response Time Related Items

8.1.6.1 Measured tpmC must be reported.

8.1.6.2 Ninetieth percentile, maximum and average response times must be reported for all transaction types
as well as for the Menu response time.

8.1.6.3 The minimum, the average, and the maximum keying and think times must be reported for each
transaction type.

8.1.6.4 Response Time frequency distribution curves (see Clause 5.6.1) must be reported for each transaction
type.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 98 of 130

8.1.6.5 The performance curve for response times versus throughput (see Clause 5.6.2) must be reported for
the New-Order transaction.

8.1.6.6 Think Time frequency distribution curves (see Clause 5.6.3) must be reported for the New-Order
transaction.

8.1.6.7 There is no requirement to report Keying Time distribution curves.

8.1.6.8 A graph of throughput versus elapsed time (see Clause 5.6.4) must be reported for the New-Order
transaction.

8.1.6.9 The method used to determine that the SUT had reached a steady state prior to commencing the
measurement interval (see Clause 5.5) must be described.

8.1.6.10 A description of how the work normally performed during a sustained test (for example
checkpointing, writing redo/undo log records, etc.), actually occurred during the measurement interval must be
reported.

8.1.6.11 The start time and duration in seconds of at least the four (4) longest checkpoints during the
Measurement Interval must be disclosed (see Clause 5.5.2.2 (2)).

8.1.6.12 A statement of the duration of the measurement interval for the reported Maximum Qualified
Throughput (tpmC) must be included.

8.1.6.13 The method of regulation of the transaction mix (e.g., card decks or weighted random distribution)
must be described. If weighted distribution is used and the RTE adjusts the weights associated with each
transaction type, the maximum adjustments to the weight from the initial value must be disclosed.

8.1.6.14 The percentage of the total mix for each transaction type must be disclosed.

8.1.6.15 The percentage of New-Order transactions rolled back as a result of invalid item number must be
disclosed.

8.1.6.16 The average number of order-lines entered per New-Order transaction must be disclosed.

8.1.6.17 The percentage of remote order-lines entered per New-Order transaction must be disclosed.

8.1.6.18 The percentage of remote Payment transactions must be disclosed.

8.1.6.19 The percentage of customer selections by customer last name in the Payment and Order-Status
transactions must be disclosed.

8.1.6.20 The percentage of Delivery transactions skipped due to there being fewer than necessary orders in the
New-Order table must be disclosed.

8.1.6.21 The number of checkpoints in the Measurement Interval, the time in seconds from the start of the
Measurement Interval to the first checkpoint and the Checkpoint Interval must be disclosed.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 99 of 130

8.1.7 Clause 6 SUT, Driver, and Communication Definition Related Items

8.1.7.1 The RTE input parameters, code fragments, functions, etc. used to generate each transaction input
field must be disclosed.

Comment: The intent is to demonstrate the RTE was configured to generate transaction input data as specified in
Clause 2.

8.1.7.2 The number of terminal connections lost during the Measurement Interval must be disclosed (see
Clause 6.6.2).

8.1.7.3 It must be demonstrated that the functionality and performance of the components being emulated in
the Driver System are equivalent to that of the priced system. The results of the test described in Clause 6.6.3.4 must
be disclosed.

8.1.7.4 A complete functional diagram of both the benchmark configuration and the configuration of the
proposed (target) system must be disclosed. A detailed list of all software and hardware functionality being
performed on the Driver System, and its interface to the SUT must be disclosed (see Clause 6.6.3.6).

8.1.7.5 The network configurations of both the tested services and the proposed (target) services which are
being represented and a thorough explanation of exactly which parts of the proposed configuration are being
replaced with the Driver System must be disclosed (see Clause 6.6.4).

8.1.7.6 The bandwidth of the network(s) used in the tested/priced configuration must be disclosed.

8.1.7.7 If the configuration requires operator intervention (see Clause 6.6.6), the mechanism and the
frequency of this intervention must be disclosed.

8.1.8 Clause 7 Pricing Related Items

8.1.8.1 A detailed list of hardware and software used in the priced system must be reported. Each separately
orderable item must have vendor part number, description, and release/revision level, and either general
availability status or committed delivery date. If package-pricing is used, vendor part number of the package and a
description uniquely identifying each of the components of the package must be disclosed. Pricing source(s) and
effective date(s) of price(s) must also be reported.

8.1.8.2 The total 3-year price of the entire configuration must be reported, including: hardware, software, and
maintenance charges. Separate component pricing is recommended. The basis of all discounts used must be
disclosed.

8.1.8.3 The committed delivery date for general availability (availability date) of products used in the price
calculations must be reported. When the priced system includes products with different availability dates, the
reported availability date for the priced system must be the date at which all components are committed to be
available. This single date must be reported on the first page of the Executive Summary. All availability dates,
whether for individual components or for the SUT as a whole, must be disclosed to a precision of one day.

8.1.8.4 A statement of the measured tpmC, as well as the respective calculations for 3-year pricing,
price/performance (price/tpmC), and the availability date must be included.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 100 of 130

8.1.8.5 Additional Clause 7 related items may be included in the Full Disclosure Report for each country
specific priced configuration. Country specific pricing is subject to Clause 7.1.7.

8.1.8.6 For any usage pricing, the sponsor must disclose:

• Usage level at which the component was priced.

• A statement of the company policy allowing such pricing.

Comment: Usage pricing may include, but is not limited to, the operating system and database management
software.

8.1.8.7 System pricing should include subtotals for the following components: Server Hardware, Server
Software, Client Hardware, Client Software, and Network Components . Clause 6.1 describes the Server and Client
components. An example of the standard pricing sheet is shown in Appendix B.

8.1.8.8 System pricing must include line item indication where non-sponsoring companies' brands are used.
System pricing must also include line item indication of third party pricing. See example in Appendix B.

Comment: By standardizing the pricing spreadsheet and adding subtotals the value of the FDR and executive
summary will be enhanced. This will allow the reader to more easily compare results and determine pricing.

8.1.9 Clause 9 Audit Related Items

8.1.9.1 The auditor's name, address, phone number, and a copy of the auditor's attestation letter indicating
compliance must be included in the Full Disclosure Report.

8.1.9.2 A review of the pricing model is required to ensure that all components required are priced (see
Clause 9.2.8). The auditor is not required to review the final Full Disclosure Report or the final pricing prior to
issuing the attestations letter.

8.2 Availability of the Full Disclosure Report

The Full Disclosure Report must be readily available to the public at a reasonable charge, similar to charges for
similar documents by that test sponsor. The report must be made available when results are made public. In order to
use the phrase "TPC Benchmark™ C", the Full Disclosure Report must have been submitted to the TPC
Administrator as well as written permission obtained to distribute same.

8.3 Revisions to the Full Disclosure Report

Revisions to the full disclosure documentation shall be handled as follows:

1. Fully documented price changes can be reflected in a new published price/performance. The benchmark
need not be rerun to remain compliant.

2. Hardware or Software product substitutions within the SUT, with the exceptions noted below require the
benchmark to be re-run with the new components in order to re-establish compliance. The exceptions are:

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 101 of 130

a. For any substitution of equipment emulated during the benchmark, (as allowed under Clause 6) a
new test according to Clause 6.6.3.4 must be provided.

b. Secondary components such as front-end systems, disks, terminal servers, network adapters,
routers, bridges, repeaters and the like may be substituted if and only if the original used during the
benchmark run is no longer orderable from the supplier. The substitute must be at least equivalent
to the original in performance. In addition, the capacity of the substitute (memory, slots for systems,
formatted MB for disks etc.) must be at least equivalent to the original.

Comment 1: The intent is to allow substitution when a component is no longer orderable and the change
is at least equivalent in performance as compared to the reported tpmC.

Necessary proof that the original component is no longer orderable and that the substitute is equivalent or
better in performance must be provided to a TPC certified auditor. The auditor may require additional
tests to be run if the proof by documentation is not considered adequate. The auditor’s letter of attestation
must be attached to the revised full disclosure report.

Comment 2: Substitution of the Server or Back-end system or the Host system, OS, DBMS or TP Monitor is
not allowed under any circumstances.

 Comment 3: The component substitution will be open to challenge for a 60 day period.

3. The revised report should be submitted as defined in Clause 8.2.

 Comment: During the normal product life cycle problems will be uncovered that require changes,
sometimes referred to as ECOs, FCOs, Patches, Updates, etc. When the cumulative result of applied
changes causes the tpmC rating of the system to decrease by more than 2% from the reported tpmC, then
the test sponsor is required to re-validate the benchmark results.

4. Fully documented price decreases can be reflected in a new published price/performance. When
cumulative price changes have resulted in an increase of 2% or more from the reported
price/performance, the test sponsor must submit revised price/performance results to the TPC within 30
days of the effective date of the price change(s) to remain in conformance. The benchmark need not be re-
run to remain in conformance.

 Comment: The intent of this clause is that published price/performance reflect actual current
price/performance.

5. A change in the committed availability date for the priced system can be reflected in a new published
availability date.

6. A report may be revised to add or delete Clause 7 related items for country specific priced configurations.

7. Full Disclosure Report revisions may be required for other reasons according to TPC policies (see TPC
Policy Document)

8. Repricing of current results must be reviewed and approved by the auditor if there is a change to the
pricing model. Changes in prices of line item components do not constitute a pricing model change.

8.4 Official Language

The official Full Disclosure Report must be written and submitted in English, but can be translated to additional
languages.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 102 of 130

Clause 9: AUDIT

9.1 General Rules

9.1.1 An independent audit of the benchmark results by an auditor certified by the TPC is required. An
audit checklist is provided as part of this specification. Please obtain the current audit checklist from one of the
auditors. The term "independent" is defined as: "the outcome of the benchmark carries no financial benefit to the
auditing agency other than fees earned directly related to the audit." In addition, the auditing agency cannot have
supplied any performance consulting under contract for the benchmark under audit. The term "certified" is defined
as: "the TPC has reviewed the qualification of the auditor and certified that the auditor is capable of verifying
compliance of the benchmark result." Please see the TPC Audit Policy for a detailed description of the auditor
certification process.

In addition, the following conditions must be met:

1. The auditing agency cannot be financially related to the sponsor. For example, the auditing agency is
financially related if it is a dependent division, the majority of its stock is owned by the sponsor, etc.

2. The auditing agency cannot be financially related to any one of the suppliers of the measured/priced
componentry, e.g., the DBMS supplier, the terminal or terminal concentrator supplier, etc.

9.1.2 If audited, the auditor's attestation letter must be made readily available to the public as part of the
Full Disclosure Report, but a detailed report from the auditor is not required.

9.1.3 For the purpose of the audit, only transactions that are generated by the Driver System and the data
associated with those transactions should be used for the audit tests, with the exception of the initial database
population verification.

9.1.4 In the case of audited TPC-C results which are used as a basis for new TPC-C results, the sponsor of
the new benchmark can claim that the results were audited if, and only if:

1. The auditor ensures that the hardware and software products are the same.

2. The auditor reviews the Full Disclosure Report (FDR) of the new results and ensures that they match what
is contained in the original sponsor's FDR.

3. The auditor can attest to Clauses 9.2.8.

The auditor is not required to follow any of the remaining auditor's check list items from Clause 9.2.

9.2 Auditor's check list

9.2.1 Clause 1 Logical Database Design Related Items

9.2.1.1 Verify that specified attributes (i.e., columns) and rows exist, and that they conform to the
specifications.

9.2.1.2 Verify that the row identifiers are not disk or file offsets.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 103 of 130

9.2.1.3 Verify that all tables support retrievals, inserts and deletes.

9.2.1.4 Verify the randomness of the input data to the system under test for all transactions. Include
verification that the values generated are uniform across the entire set of rows in the configured database necessary
to support the claimed tpmC rating per Clause 5.4.

9.2.1.5 Verify whether any horizontal and/or vertical partitioning has been used, and, if so, whether it was
implemented in accordance with the TPC-C requirements.

9.2.1.6 Verify whether any replication of tables has been used, and, if so, whether it was implemented in
accordance with the TPC-C requirements.

9.2.1.7 Verify that no more than 1%, or no more than one (1), whichever is greater, of the Delivery
transactions skipped because there were fewer than necessary orders present in the New-Order table.

9.2.2 Clause 2 Transaction and Terminal Profiles Related Items

9.2.2.1 Verify that the application programs match the respective transaction profiles.

9.2.2.2 Verify that the input data satisfy the requirements and that input/output screen layouts are
preserved.

9.2.2.3 Verify compliance with the error detection and reporting requirement as specified in clause 2.3.6.

Comment: This may be verified by code inspection at the discretion of the auditor.

9.2.2.4 Verify that each New-Order transaction uses independently generated input data and not data from
rolled back transactions.

9.2.2.5 Verify that the randomly generated input data satisfies the following constraints:

1. At least 0.9% and at most 1.1% of the New-Order transactions roll back as a result of an unused item
number. For these transactions the required profile is executed, and the correct screen is displayed.
Furthermore, verify that the application makes only permitted use of the fact that the input data contains
an unused item number.

2. The average number of order-lines per order is in the range of 9.5 to 10.5 and the number of order-lines is
uniformly distributed from 5 to 15 for the New-Order transactions that are submitted to the SUT during
the measurement interval.

3. The number of remote order-lines is at least 0.95% and at most 1.05% of the number of order-lines that are
filled in by the New-Order transactions that are submitted to the SUT during the measurement interval,
and the remote warehouse numbers are uniformly distributed within the range of active warehouses (see
Clause 4.2.2).

4. The number of remote Payment transactions is at least 14% and at most 16% of the number of Payment
transactions that are submitted to the SUT during the measurement interval, and the remote warehouse
numbers are uniformly distributed within the range of active warehouses (see Clause 4.2.2).

5. The number of customer selections by customer last name in the Payment transaction is at least 57% and
at most 63% of the number of Payment transactions that are submitted to the SUT during the measurement
interval.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 104 of 130

6. The number of customer selections by customer last name in the Order-Status transaction is at least 57%
and at most 63% of the number of Order-Status transactions that are submitted to the SUT during the
measurement interval.

9.2.2.6 Verify that results from executing the Delivery transaction in deferred mode is recorded into a result
file. Verify that the result file is maintained on the proper type of durable medium. Furthermore, verify that no action
is recorded into the result file until after the action has been completed.

9.2.2.7 Verify that all input and output fields that may change on screens are cleared at the beginning of each
transaction.

9.2.2.8 Using one of the configured terminals, verify that the input/output screen for each transaction types
provides all the features described in Clause 2.2.2.4.

9.2.2.9 The auditor can further verify the compliance of the input data by querying the following attributes:

• O_ALL_LOCAL can be used to verify that approximately 10% of all orders contain at least one remote order-
line.

• C_PAYMENT_CNT can be used to verify that within the Payment transaction customers were selected
according to the required non-uniform random distribution.

• S_YTD can be used to verify that within the New-Order transaction the quantity ordered for each item was
within the required range.

• S_ORDER_CNT can be used to verify that within the New-Order transaction items were selected according
to the required non-uniform random distribution.

• S_REMOTE_CNT can be used to verify that within the New-Order transaction remote order-lines were
selected according to the required uniform random distribution.

9.2.3 Clause 3 Transactions and System Properties Related Items

9.2.3.1 Verify that the requirements of each of the ACID tests were met.

9.2.4 Clause 4 Scaling and Database Population Related Items

9.2.4.1 Verify that the database is initially populated with the properly scaled required population.

9.2.4.2 Verify the correct cardinalities of the nine database tables, at the start of the benchmark run as well as
at the end of it, and that the growth in the New-Order table, in particular, is consistent with the number and type of
executed transactions.

9.2.6 Clause 5 Performance Metrics and Response Time Related Items

9.2.6.1 Verify that the mix of transactions as seen by the SUT satisfies the required minimum percentage of
mix.

9.2.6.2 Verify the validity of the method used to measure the response time at the RTE.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 105 of 130

9.2.6.3 If part of the SUT is emulated, verify that the reported response time is no less than the response time
that would be seen by a real terminal user.

9.2.6.4 Verify the method used to determine that the SUT had reached a steady state prior to commencing the
measurement interval (see Clause 5.5).

9.2.6.5 Verify that all work normally done in a steady state environment actually occurred during the
measurement interval, for example checkpointing, writing redo/undo log records to disk, etc.

9.2.6.6 Verify the duration of the measurement interval for the reported tpmC.

9.2.6.7 Verify that the response times have been measured in the same time interval as the test.

9.2.6.8 Verify that the required Keying and Think Times for the emulated users occur in accordance with the
requirements.

9.2.6.9 Verify that the 90th percentile response time for each transaction type is greater than or equal to the
average response time of that transaction type.

9.2.6.10 If the RTE adjusts the weights associated to each transaction type, verify that these adjustments have
been limited to keep the weights within 5% on either side of their respective initial value.

9.2.6.11 If the RTE uses card decks (see Clause 5.2.4.2) verify that they meet the requirements.

9.2.6.12 If periodic checkpoints are used, verify that they are properly scheduled and executed during the
measurement interval.

9.2.6.13 Verify that the average think time for each transaction type is equal to or greater than the minimum
specified in Clause 5.2.5.7

9.2.7 Clause 6 SUT, Driver, and Communications Definition Related Items

9.2.7.1 Describe the method used to verify the accurate emulation of the tested terminal population by the
Driver System if one was used.

9.2.7.2 Verify terminal connectivity and context maintenance as required in Clause 6.6.2.

9.2.7.3 Verify that the restrictions on operator intervention are met.

9.2.8 Clause 7 Pricing Related Items

9.2.8.1 Verify that the pricing model includes all the hardware and software licenses, warranty coverage,
and additional maintenance costs as required.

Comment 1: The pricing model is spreadsheet detailing how the 3-year cost of ownership is computed (see Clauses
7.1.7, 8.1.8.1, and 8.1.8.2). It should contain the prices, discounts, warranty information, and maintenance costs for
all the hardware and software components in the priced configuration. Letters with price quotes for components
from OEM sources must also be verified.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 106 of 130

Comment 2: Since final pricing for new products is typically set very close to the product announcement date, the
auditors are not required to verify the final pricing of the tested system prior to issuing the attestation letter.

9.2.8.2 Verify that the priced system (as defined in Clause 7.1.2) has sufficient disk storage for system
software, database tables, and recovery logs.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 107 of 130

Index

1

60-day ? 60, 61, 62, 89
60-Day Space ? 62

3

3-year pricing ? 86, 91, 102

4

4 hours ? 88, 90, 91

9

90th percentile response time ? 71, 76, 82, 108

A

ACID ? 6, 20, 38, 41, 45, 47, 55, 73, 82, 89, 96, 107
adding ? 18, 102
application ? 6, 7, 9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 30, 48,

52, 85, 86, 90, 92, 93, 106
arbitrary ? 19, 51, 52
Atomicity ? 47, 48
Attributes ? 17
Auditor's check list ? 105

B

boundaries ? 17
business transaction ? 20, 24, 25, 27, 32, 37, 40, 41, 42, 43,

44, 45, 54, 68, 69, 72

C

C_LAST ? 13, 20, 28, 30, 31, 32, 33, 35, 37, 38, 39, 63, 66, 95,
96, 99

cardinality ? 10, 18, 60, 61, 67, 97
checkpoint ? 58, 59, 74, 75, 92, 100, 101, 108, 139
Checkpoint Interval ? 74, 75, 101
commercially available ? 6, 19, 21, 25, 26, 83, 85, 88, 96

COMMIT ? 48, 51, 52, 53, 54, 55, 56, 116, 118, 119, 121, 122,
124, 125, 126, 127, 129, 130, 131, 133

committed ? 18, 24, 29, 31, 34, 38, 41, 43, 45, 51, 57, 58, 59,
68, 86, 89, 101, 102, 104

concentration ? 85
Consistency ? 47, 48, 49, 50, 59, 93
context ? 9, 14, 26, 48, 55, 83, 85
CUSTOMER ? 13, 25, 28, 33, 37, 38, 43, 48, 50, 61, 66, 95, 98

D

Daily-Growth ? 62
Daily-Spread ? 62
data manipulation ? 19, 25, 29, 96
database transaction ? 20, 24, 25, 27, 28, 29, 33, 34, 37, 38,

40, 41, 42, 43, 44, 45, 47, 48, 51, 54
de multiplexing ? 25
deck ? 70, 100, 108
deletes ? 18, 51, 106
deleting ? 18
Delivery transaction ? 40, 42, 51, 54, 55, 68, 69, 71, 72, 74, 83,

96, 101, 106, 107
Delivery Transaction ? 40, 121
Dirty Read ? 51
Dirty Write ? 51
DISTRICT ? 12, 28, 33, 44, 48, 49, 58, 61, 65, 66
Driver ? 58, 81, 82, 83, 84, 85, 88, 101, 105, 108
Durability ? 47, 57, 58
Durable ? 57
Dynamic-Space ? 62

E

Emulated Users ? 68
Executive Summary ? 92, 135

F

Free-Space ? 62
front-end systems ? 82, 103
FULL DISCLOSURE ? 92
Full Disclosure Report ? 7, 22, 47, 84, 85, 86, 87, 92, 102, 103,

104, 105, 139

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 108 of 130

H

hardware ? 7, 17, 19, 25, 58, 82, 83, 85, 86, 87, 88, 90, 91, 101,
105, 108

hashing ? 18
Horizontal partitioning ? 17

I

inserts ? 18, 94, 106, 130
Integrity ? 18
Isolation ? 47, 51, 52, 53, 54, 55, 56, 96

K

Keying Time ? 69, 70, 71

L

LAN ? 11, 13, 33, 35, 38, 39, 43, 50, 54, 66, 88, 89, 93, 94, 95,
99

last name ? 20, 22, 28, 32, 33, 36, 37, 38, 39, 63, 74, 101, 106,
107, 134

load balancing ? 25
locking ? 6, 52, 93
Logical Database Design ? 94, 105

M

measurement interval ? 10, 27, 32, 37, 40, 41, 47, 50, 58, 62,
68, 69, 70, 72, 73, 74, 75, 76, 77, 89, 92, 100, 106, 107, 108,
139

Measurement Interval ? 73, 74, 75, 101
memory ? 41, 57, 58, 89, 93, 94, 103
Memory ? 57
menu ? 22, 23, 68, 69
mirroring ? 57
mix ? 2, 6, 7, 48, 69, 70, 71, 72, 73, 76, 82, 89, 92, 94, 96, 100,

107
modifying ? 18
multiplexing ? 25, 82, 83

N

Network Configuration ? 85
NEW-ORDER ? 14, 28, 43, 48, 49, 50, 55, 56, 60, 61, 67, 89,

96
New-Order transaction ? 25, 27, 29, 31, 51, 52, 53, 54, 55, 56,

58, 67, 68, 69, 70, 71, 72, 73, 76, 77, 96, 100, 106, 107
New-Order Transaction ? 27, 115

Ninetieth percentile ? 100
Non-repeatable Read ? 51
non-uniform ? 20, 27, 32, 37, 66, 107, 134
non-volatile ? 57
NURand ? 20, 27, 32, 37, 66, 123, 131

O

operating system ? 17, 19, 43, 47, 58, 66, 67, 102
ORDER ? 14, 15, 16, 28, 29, 38, 43, 44, 48, 49, 50, 55, 56, 58,

60, 61, 62, 65, 67, 89, 96, 98, 107, 115, 117, 119, 121
ORDER-LINE ? 29, 49, 50, 60, 61, 62, 89
Order-Status transaction ? 39, 51, 52, 53, 56, 69, 74, 96, 101,

107
Order-Status Transaction ? 37, 119
Over-scaling ? 61

P

Pacing ? 68
partitioned data ? 19, 95
Payment transaction ? 32, 33, 35, 48, 51, 54, 69, 74, 96, 101,

106, 107
Payment Transaction ? 32, 117
Performance Metrics ? 100, 107
PERFORMANCE METRICS ? 68
Phantom ? 51
power supply ? 82
precision ? 11, 18, 20, 64, 91
Pricing ? 8, 86, 87, 88, 89, 101, 108, 138
pricing spreadsheet ? 102
primary key ? 14, 18, 32, 37, 96

R

random ? 20, 27, 28, 32, 37, 40, 44, 48, 50, 54, 55, 61, 63, 64,
65, 66, 67, 69, 70, 89, 96, 100, 106, 107, 134

randomly ? 20, 27, 28, 32, 37, 40, 48, 50, 55, 66, 70, 89, 106
Recovery ? 26, 89, 93
remote order-lines ? 73, 96, 100, 106, 107
remote Payment transaction ? 74, 96, 101, 106
replaceable ? 88, 91
replicated table ? 17, 55
Replication ? 17, 95
RESPONSE TIME ? 68
Response Time Constraints ? 70
ROLLBACK ? 48, 51, 116, 134
Roll-forward ? 59, 89
routers ? 93, 94, 103
RTE ? 20, 23, 58, 70, 71, 72, 73, 79, 82, 83, 84, 85, 88, 100,

101, 107, 108

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 109 of 130

S

Scaling ? 60, 97, 107
space ? 10, 18, 22, 23, 30, 34, 38, 41, 45, 60, 61, 62, 67, 73, 89,

99
spareable ? 88, 91
Static-Space ? 6 2
Stock-Level transaction ? 46, 47, 51, 52, 68, 69
Stock-Level Transaction ? 44, 122
storage ? 18, 57, 60, 61, 62, 67, 82, 86, 89, 96, 109
SUT ? 20, 23, 25, 27, 28, 32, 33, 37, 40, 41, 44, 47, 50, 58, 61,

68, 69, 71, 72, 73, 74, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 94, 96, 100, 101, 103, 106, 107, 108

System pricing ? 102

T

terminal ? 6, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 35,
36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 58, 60, 61, 69, 70, 71,
72, 76, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 102, 103,
105, 107, 108, 115

TERMINAL ? 20
test sponsor ? 22, 25, 42, 52, 55, 58, 68, 70, 73, 75, 83, 85, 86,

87, 103
Test sponsors ? 47
Think Time ? 69, 71, 76, 77, 100, 108, 139
Third-party pricing ? 87
throughput ? 6, 55, 60, 61, 62, 68, 69, 71, 72, 73, 74, 76, 77, 82,

85, 91, 92, 100, 139

timestamp ? 25, 72, 115, 117, 121, 123, 124, 131, 132
TM ? 25, 26
TPC Auditor ? 58
TPC-C transactions ? 47, 48, 52, 58, 98, 115
tpmC ? 3, 6, 50, 58, 60, 62, 72, 73, 77, 82, 84, 86, 89, 91, 92,

100, 102, 103, 106, 108, 139
transaction mix ? 7, 70, 71, 72, 73, 76, 82, 89, 92, 94, 100
Transaction Mix ? 69, 139
transaction monitors ? 26, 93
transaction profiles ? 17, 21, 25, 57, 60, 106
Transaction RT ? 25, 69, 70, 72
Transparency ? 19, 26

U

Uninterruptible Power Supply ? 57, 58, 90
unique ? 10, 11, 12, 13, 14, 15, 16, 18, 20, 29, 32, 37, 44, 64,

65, 66, 67, 93, 101

V

Vertical partitioning ? 17

W

WAREHOUSE ? 11, 28, 33, 48, 49, 60, 61, 64, 65, 97
workstations ? 82, 84, 88, 93, 94

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 110 of 130

Appendix A: SAMPLE PROGRAMS

The following are examples of the TPC-C transactions and database load program in SQL embedded in C. Only the
basic functionality of the TPC-C transactions is supplied. All terminal I/O operations, and miscellaneous functions
have been left out of these examples. The code presented here is for demonstration purposes only, and is not meant to
be an optimal implementation.

Note: The examples in this appendix, in some areas, may not follow all the requirements of the benchmark. In case of
discrepancy between the specifications and the programming examples, the specifications prevail.

A.1 The New-Order Transaction

int neword()
{
 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 gettimestamp(datetime);

 EXEC SQL SELECT c_discount, c_last, c_credit, w_tax
 INTO :c_discount, :c_last, :c_credit, :w_tax
 FROM customer, warehouse
 WHERE w_id = :w_id AND c_w_id = w_id AND
 c_d_id = :d_id AND c_id = :c_id;

 EXEC SQL SELECT d_next_o_id, d_tax INTO :d_next_o_id, :d_tax
 FROM district
 WHERE d_id = :d_id AND d_w_id = :w_id;

 EXEC SQL UPDATE district SET d_next_o_id = :d_next_o_id + 1
 WHERE d_id = :d_id AND d_w_id = :w_id;

 o_id=d_next_o_id;

 EXEC SQL INSERT INTO ORDERS (o_id, o_d_id, o_w_id, o_c_id,
 o_entry_d, o_ol_cnt, o_all_local)
 VALUES (:o_id, :d_id, :w_id, :c_id,
 :datetime, :o_ol_cnt, :o_all_local);

 EXEC SQL INSERT INTO NEW_ORDER (no_o_id, no_d_id, no_w_id)
 VALUES (:o_id, :d_id, :w_id);

 for (ol_number=1; ol_number<=o_ol_cnt; ol_number++)
 {
 ol_supply_w_id=atol(supware[ol_number-1]);
 if (ol_supply_w_id != w_id) o_all_local=0;
 ol_i_id=atol(itemid[ol_number-1]);
 ol_quantity=atol(qty[ol_number-1]);

 EXEC SQL WHENEVER NOT FOUND GOTO invaliditem;

 EXEC SQL SELECT i_price, i_name , i_data
 INTO :i_price, :i_name, :i_data

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 111 of 130

 FROM item
 WHERE i_id = :ol_i_id;

 price[ol_number-1] = i_price;
 strncpy(iname[ol_number-1],i_name,24);

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL SELECT s_quantity, s_data,
 s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05
 s_dist_06, s_dist_07, s_dist_08, s_dist_09, s_dist_10
 INTO :s_quantity, :s_data,
 :s_dist_01, :s_dist_02, :s_dist_03, :s_dist_04, :s_dist_05
 :s_dist_06, :s_dist_07, :s_dist_08, :s_dist_09, :s_dist_10
 FROM stock
 WHERE s_i_id = :ol_i_id AND s_w_id = :ol_supply_w_id;

 pick_dist_info(ol_dist_info, ol_w_id); // pick correct s_dist_xx
 stock[ol_number-1] = s_quantity;

 if ((strstr(i_data,"original") != NULL) &&
 (strstr(s_data,"original") != NULL))
 bg[ol_number-1] = 'B';
 else
 bg[ol_number-1] = 'G';

 if (s_quantity > ol_quantity)
 s_quantity = s_quantity - ol_quantity;
 else
 s_quantity = s_quantity - ol_quantity + 91;

 EXEC SQL UPDATE stock SET s_quantity = :s_quantity
 WHERE s_i_id = :ol_i_id
 AND s_w_id = :ol_supply_w_id;

 ol_amount = ol_quantity * i_price * (1+w_tax+d_tax) * (1-c_discount);
 amt[ol_number-1]=ol_amount;
 total += ol_amount;

 EXEC SQL INSERT
 INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number,
 ol_i_id, ol_supply_w_id,
 ol_quantity, ol_amount, ol_dist_info)
 VALUES (:o_id, :d_id, :w_id, :ol_number,
 :ol_i_id, :ol_supply_w_id,
 :ol_quantity, :ol_amount, :ol_dist_info);
 } /*End Order Lines*/

 EXEC SQL COMMIT WORK;
 return(0);

invaliditem:
 EXEC SQL ROLLBACK WORK;
 printf("Item number is not valid");
 return(0);

sqlerr:
 error();
}

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 112 of 130

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 113 of 130

A.2 The Payment Transaction

int payment()
{
 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 gettimestamp(datetime);

 EXEC SQL UPDATE warehouse SET w_ytd = w_ytd + :h_amount
 WHERE w_id=:w_id;

 EXEC SQL SELECT w_street_1, w_street_2, w_city, w_state, w_zip, w_name
 INTO :w_street_1, :w_street_2, :w_city, :w_state, :w_zip, :w_name
 FROM warehouse
 WHERE w_id=:w_id;

 EXEC SQL UPDATE district SET d_ytd = d_ytd + :h_amount
 WHERE d_w_id=:w_id AND d_id=:d_id;

 EXEC SQL SELECT d_street_1, d_street_2, d_city, d_state, d_zip, d_name
 INTO :d_street_1, :d_street_2, :d_city, :d_state, :d_zip, :d_name
 FROM district
 WHERE d_w_id=:w_id AND d_id=:d_id;

 if (byname)
 {
 EXEC SQL SELECT count(c_id) INTO :namecnt
 FROM customer
 WHERE c_last=:c_last AND c_d_id=:c_d_id AND c_w_id=:c_w_id;

 EXEC SQL DECLARE c_byname CURSOR FOR
 SELECT c_first, c_middle, c_id,
 c_street_1, c_street_2, c_city, c_state, c_zip,
 c_phone, c_credit, c_credit_lim,
 c_discount, c_balance, c_since
 FROM customer
 WHERE c_w_id=:c_w_id AND c_d_id=:c_d_id AND c_last=:c_last
 ORDER BY c_first;

 EXEC SQL OPEN c_byname;

 if (namecnt%2) namecnt++; // Locate midpoint customer;
 for (n=0; n<namecnt/2; n++)
 {
 EXEC SQL FETCH c_byname
 INTO :c_first, :c_middle, :c_id,
 :c_street_1, :c_street_2, :c_city, :c_state, :c_zip,
 :c_phone, :c_credit, :c_credit_lim,
 :c_discount, :c_balance, :c_since;
 }

 EXEC SQL CLOSE c_byname;
 }
 else
 {

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 114 of 130

 EXEC SQL SELECT c_first, c_middle, c_last,
 c_street_1, c_street_2, c_city, c_state, c_zip,
 c_phone, c_credit, c_credit_lim,
 c_discount, c_balance, c_since
 INTO :c_first, :c_middle, :c_last,
 :c_street_1, :c_street_2, :c_city, :c_state, :c_zip,
 :c_phone, :c_credit, :c_credit_lim,
 :c_discount, :c_balance, :c_since
 FROM customer
 WHERE c_w_id=:c_w_id AND c_d_id=:c_d_id AND c_id=:c_id;
 }
 c_balance += h_amount;
 c_credit[2]='\0';
 if (strstr(c_credit, "BC"))
 {
 EXEC SQL SELECT c_data INTO :c_data
 FROM customer
 WHERE c_w_id=:c_w_id AND c_d_id=:c_d_id AND c_id=:c_id;

 sprintf(c_new_data,"| %4d %2d %4d %2d %4d $%7.2f %12c %24c",
 c_id,c_d_id,c_w_id,d_id,w_id,h_amount
 h_date, h_data);
 strncat(c_new_data,c_data,500-strlen(c_new_data));

 EXEC SQL UPDATE customer
 SET c_balance = :c_balance, c_data = :c_new_data
 WHERE c_w_id = :c_w_id AND c_d_id = :c_d_id AND
 c_id = :c_id;
 }
 else
 {
 EXEC SQL UPDATE customer SET c_balance = :c_balance
 WHERE c_w_id = :c_w_id AND c_d_id = :c_d_id AND
 c_id = :c_id;
 }
 strncpy(h_data,w_name,10);
 h_data[10]='\0';
 strncat(h_data,d_name,10);
 h_data[20]=' ';
 h_data[21]=' ';
 h_data[22]=' ';
 h_data[23]=' ';

 EXEC SQL INSERT INTO history (h_c_d_id, h_c_w_id, h_c_id, h_d_id,
 h_w_id, h_date, h_amount, h_data)
 VALUES (:c_d_id, :c_w_id, :c_id, :d_id,
 :w_id, :datetime, :h_amount, :h_data);

 EXEC SQL COMMIT WORK;
 return(0);

sqlerr:
 error();
}

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 115 of 130

A.3 The Order-Status Transaction
int ostat()
{
 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 if (byname)
 {
 EXEC SQL SELECT count(c_id) INTO :namecnt
 FROM customer
 WHERE c_last=:c_last AND c_d_id=:d_id AND c_w_id=:w_id;

 EXEC SQL DECLARE c_name CURSOR FOR
 SELECT c_balance, c_first, c_middle, c_id
 FROM customer
 WHERE c_last=:c_last AND c_d_id=:d_id AND c_w_id=:w_id
 ORDER BY c_first;
 EXEC SQL OPEN c_name;

 if (namecnt%2) namecnt++; // Locate midpoint customer
 for (n=0; n<namecnt/2; n++)
 {
 EXEC SQL FETCH c_name
 INTO :c_balance, :c_first, :c_middle, :c_id;
 }

 EXEC SQL CLOSE c_name;
 }
 else {
 EXEC SQL SELECT c_balance, c_first, c_middle, c_last
 INTO :c_balance, :c_first, :c_middle, :c_last
 FROM customer
 WHERE c_id=:c_id AND c_d_id=:d_id AND c_w_id=:w_id;
 }
 EXEC SQL SELECT o_id, o_carrier_id, o_entry_d
 INTO :o_id, :o_carrier_id, :entdate
 FROM orders
 ORDER BY o_id DESC;

 EXEC SQL DECLARE c_line CURSOR FOR
 SELECT ol_i_id, ol_supply_w_id, ol_quantity,
 ol_amount, ol_delivery_d
 FROM order_line
 WHERE ol_o_id=:o_id AND ol_d_id=:d_id AND ol_w_id=:w_id;

 EXEC SQL OPEN c_line;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 i=0;
 while (sql_notfound(FALSE))
 {
 i++;
 EXEC SQL FETCH c_line
 INTO :ol_i_id[i], :ol_supply_w_id[i], :ol_quantity[i],
 :ol_amount[i], :ol_delivery_d[i];
 }

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 116 of 130

 EXEC SQL CLOSE c_line;
 EXEC SQL COMMIT WORK;
 return(0);

sqlerr:
 error();
}

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 117 of 130

A.4 The Delivery Transaction

int delivery()
{
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 gettimestamp(datetime);

 /* For each district in warehouse */
 printf("W: %d\n", w_id);
 for (d_id=1; d_id<=DIST_PER_WARE; d_id++)
 {
 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;
 EXEC SQL DECLARE c_no CURSOR FOR
 SELECT no_o_id
 FROM new_order
 WHERE no_d_id = :d_id AND no_w_id = :w_id AND no_o_id
 ORDER BY no_o_id ASC;

 EXEC SQL OPEN c_no;

 EXEC SQL WHENEVER NOT FOUND continue;
 EXEC SQL FETCH c_no INTO :no_o_id;

 EXEC SQL DELETE FROM new_order WHERE CURRENT OF c_no;

 EXEC SQL CLOSE c_no;

 EXEC SQL SELECT o_c_id INTO :c_id FROM orders
 WHERE o_id = :no_o_id AND o_d_id = :d_id AND
 o_w_id = :w_id;

 EXEC SQL UPDATE orders SET o_carrier_id = :o_carrier_id
 WHERE o_id = :no_o_id AND o_d_id = :d_id AND
 o_w_id = :w_id;

 EXEC SQL UPDATE order_line SET ol_delivery_d = :datetime
 WHERE ol_o_id = :no_o_id AND ol_d_id = :d_id AND
 ol_w_id = :w_id;

 EXEC SQL SELECT SUM(ol_amount) INTO :ol_total
 FROM order_line
 WHERE ol_o_id = :no_o_id AND ol_d_id = :d_id
 AND ol_w_id = :w_id;

 EXEC SQL UPDATE customer SET c_balance = c_balance + :ol_total
 WHERE c_id = :c_id AND c_d_id = :d_id AND
 c_w_id = :w_id;

 EXEC SQL COMMIT WORK;
 printf("D: %d, O: %d, time: %d\n", d_id, o_id, tad);

 }
 EXEC SQL COMMIT WORK;
 return(0);

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 118 of 130

sqlerr:
 error();
}

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 119 of 130

A.5 The Stock-Level Transaction

int slev()
{
 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 EXEC SQL SELECT d_next_o_id INTO :o_id
 FROM district
 WHERE d_w_id=:w_id AND d_id=:d_id;

 EXEC SQL SELECT COUNT(DISTINCT (s_i_id)) INTO :stock_count
 FROM order_line, stock
 WHERE ol_w_id=:w_id AND
 ol_d_id=:d_id AND ol_o_id<:o_id AND
 ol_o_id>=:o_id-20 AND s_w_id=:w_id AND
 s_i_id=ol_i_id AND s_quantity < :threshold;

 EXEC SQL COMMIT WORK;
 return(0);

sqlerr:
 error();
}

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 120 of 130

A.6 Sample Load Program

/*==+
 | Load TPCC tables
 +==*/

#define MAXITEMS 100000
#define CUST_PER_DIST 3000
#define DIST_PER_WARE 10
#define ORD_PER_DIST 3000

extern long count_ware;

/* Functions */

long NURand();
void LoadItems();
void LoadWare();
void LoadCust();
void LoadOrd();
void LoadNewOrd();
void Stock();
void District();
void Customer();
void Orders();
void New_Orders();
void MakeAddress();
void Error();
void Lastname();

/* Global SQL Variables */
EXEC SQL BEGIN DECLARE SECTION;
 char timestamp[20];
 long count_ware;
EXEC SQL END DECLARE SECTION;

/* Global Variables */
 int i;
 int option_debug = 0; /* 1 if generating debug output */

/*==+
 | main()
 | ARGUMENTS
 | Warehouses n [Debug] [Help]
 +==*/
void main(argc, argv)
 int argc;
 char * argv[];
{
 char arg[2];

EXEC SQL WHENEVER SQLERROR GOTO Error_SqlCall;

 count_ware=0;

 for (i=1; i<argc; i++)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 121 of 130

 {
 strncpy(arg,argv[i],2);
 arg[0] = toupper(arg[0]);

 switch (arg[0]) {
 case 'W': /* Warehouses */
 if (count_ware)
 {
 printf("Error - Warehouses specified more than once.\n");
 exit(-1);
 }
 if (argc-1>i)
 {
 i++;
 count_ware=atoi(argv[i]);
 if (count_ware<=0)
 {
 printf("Invalid Warehouse Count.\n");
 exit(-1);
 }
 }
 else
 {
 printf("Error - Warehouse count must follow Warehouse keyword\n");
 exit(-1);
 }
 break;

/******* Generic Args *********************/
 case 'D': /* Debug Option */
 if (option_debug)
 {
 printf("Error - Debug option specified more than once\n");
 exit(-1);
 }
 option_debug=1;
 break;

 case 'H': /* List Args */
 printf("Usage - Warehouses n [Debug] [Help]\n");
 exit(0);
 break;

 default : printf("Error - Unknown Argument (%s)\n",arg);
 printf("Usage - Warehouses n [Debug] [Help]\n");
 exit(-1);
 }
 }

 if (!(count_ware)) {
 printf("Not enough arguments.\n");
 printf("Usage - Warehouses n ");
 printf(" [Debug] [Help]\n");
 exit(-1);
 }

 SetSeed(time(0));
 /* Initialize timestamp (for date columns) */
 gettimestamp(timestamp);

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 122 of 130

 printf("TPCC Data Load Started...\n");
 LoadItems();
 LoadWare();
 LoadCust();
 LoadOrd();
 EXEC SQL COMMIT WORK RELEASE;
 printf("\n...DATA LOADING COMPLETED SUCCESSFULLY.\n");
 exit(0);
Error_SqlCall:
 Error();
}

/*==+
 | ROUTINE NAME
 | LoadItems
 | DESCRIPTION
 | Loads the Item table
 | ARGUMENTS
 | none
 +==*/
void LoadItems()
{
 EXEC SQL BEGIN DECLARE SECTION;
 long i_id;
 char i_name[24];
 float i_price;
 char i_data[50];
 EXEC SQL END DECLARE SECTION;
 int idatasiz;
 int orig[MAXITEMS];
 long pos;
 int i;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;
 printf("Loading Item \n");
 for (i=0; i<MAXITEMS/10; i++) orig[i]=0;
 for (i=0; i<MAXITEMS/10; i++)
 {
 do
 {
 pos = RandomNumber(0L,MAXITEMS);
 } while (orig[pos]);
 orig[pos] = 1;
 }
 for (i_id=1; i_id<=MAXITEMS; i_id++) {

 /* Generate Item Data */
 MakeAlphaString(14, 24, i_name);
 i_price=((float) RandomNumber(100L,10000L))/100.0;
 idatasiz=MakeAlphaString(26,50,i_data);
 if (orig[i_id])
 {
 pos = RandomNumber(0L,idatasiz-8);
 i_data[pos]='o';
 i_data[pos+1]='r';
 i_data[pos+2]='i';
 i_data[pos+3]='g';
 i_data[pos+4]='i';
 i_data[pos+5]='n';
 i_data[pos+6]='a';

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 123 of 130

 i_data[pos+7]='l';
 }

 if (option_debug)
 printf("IID = %ld, Name= %16s, Price = %5.2f\n",
 i_id, i_name, i_price);
 EXEC SQL INSERT INTO
 item (i_id, i_name, i_price, i_data)
 values (:i_id, :i_name, :i_price, :i_data);
 if (!(i_id % 100)) {
 printf(".");
 EXEC SQL COMMIT WORK;
 if (!(i_id % 5000)) printf(" %ld\n",i_id);
 }
 }
 EXEC SQL COMMIT WORK;
 printf("Item Done. \n");
 return;
sqlerr:
 Error();
}
/*==+
 | ROUTINE NAME
 | LoadWare
 | DESCRIPTION
 | Loads the Warehouse table
 | Loads Stock, District as Warehouses are created
 | ARGUMENTS
 | none
 +==*/
void LoadWare()
{
 EXEC SQL BEGIN DECLARE SECTION;
 long w_id;
 char w_name[10];
 char w_street_1[20];
 char w_street_2[20];
 char w_city[20];
 char w_state[2];
 char w_zip[9];
 float w_tax;
 float w_ytd;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;
 printf("Loading Warehouse \n");
 for (w_id=1L; w_id<=count_ware; w_id++) {

 /* Generate Warehouse Data */
 MakeAlphaString(6, 10, w_name);
 MakeAddress(w_street_1, w_street_2, w_city, w_state, w_zip);
 w_tax=((float)RandomNumber(10L,20L))/100.0;
 w_ytd=3000000.00;

 if (option_debug)
 printf("WID = %ld, Name= %16s, Tax = %5.2f\n",
 w_id, w_name, w_tax);
 EXEC SQL INSERT INTO
 warehouse (w_id, w_name,
 w_street_1, w_street_2, w_city, w_state, w_zip,

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 124 of 130

 w_tax, w_ytd)
 values (:w_id, :w_name,
 :w_street_1, :w_street_2, :w_city, :w_state,
 :w_zip, :w_tax, :w_ytd);
 /** Make Rows associated with Warehouse **/
 Stock(w_id);
 District(w_id);
 EXEC SQL COMMIT WORK;
 }
 return;
sqlerr:
 Error();
}
/*==+
 | ROUTINE NAME
 | LoadCust
 | DESCRIPTION
 | Loads the Customer Table
 | ARGUMENTS
 | none
 +==*/
void LoadCust()
{
 EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL END DECLARE SECTION;
 long w_id;
 long d_id;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;
 for (w_id=1L; w_id<=count_ware; w_id++)
 for (d_id=1L; d_id<=DIST_PER_WARE; d_id++)
 Customer(d_id,w_id);

 EXEC SQL COMMIT WORK; /* Just in case */
 return;
sqlerr:
 Error();
}
/*==+
 | ROUTINE NAME
 | LoadOrd
 | DESCRIPTION
 | Loads the Orders and Order_Line Tables
 | ARGUMENTS
 | none
 +==*/
void LoadOrd()
{
 EXEC SQL BEGIN DECLARE SECTION;
 long w_id;
 float w_tax;
 long d_id;
 float d_tax;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;
 for (w_id=1L; w_id<=count_ware; w_id++)
 for (d_id=1L; d_id<=DIST_PER_WARE; d_id++)
 Orders(d_id, w_id);

 EXEC SQL COMMIT WORK; /* Just in case */

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 125 of 130

 return;
sqlerr:
 Error();
}
/*==+
 | ROUTINE NAME
 | Stock
 | DESCRIPTION
 | Loads the Stock table
 | ARGUMENTS
 | w_id - warehouse id
 +==*/
void Stock(w_id)
 long w_id;
{
 EXEC SQL BEGIN DECLARE SECTION;
 long s_i_id;
 long s_w_id;
 long s_quantity;
 char s_dist_01[24];
 char s_dist_02[24];
 char s_dist_03[24];
 char s_dist_04[24];
 char s_dist_05[24];
 char s_dist_06[24];
 char s_dist_07[24];
 char s_dist_08[24];
 char s_dist_09[24];
 char s_dist_10[24];
 char s_data[50];
 EXEC SQL END DECLARE SECTION;
 int sdatasiz;
 long orig[MAXITEMS];
 long pos;
 int i;
 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;
 printf("Loading Stock Wid=%ld\n",w_id);
 s_w_id=w_id;

 for (i=0; i<MAXITEMS/10; i++) orig[i]=0;
 for (i=0; i<MAXITEMS/10; i++)
 {
 do
 {
 pos=RandomNumber(0L,MAXITEMS);
 } while (orig[pos]);
 orig[pos] = 1;
 }

 for (s_i_id=1; s_i_id<=MAXITEMS; s_i_id++) {

 /* Generate Stock Data */
 s_quantity=RandomNumber(10L,100L);
 MakeAlphaString(24,24,s_dist_01);
 MakeAlphaString(24,24,s_dist_02);
 MakeAlphaString(24,24,s_dist_03);
 MakeAlphaString(24,24,s_dist_04);
 MakeAlphaString(24,24,s_dist_05);
 MakeAlphaString(24,24,s_dist_06);

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 126 of 130

 MakeAlphaString(24,24,s_dist_07);
 MakeAlphaString(24,24,s_dist_08);
 MakeAlphaString(24,24,s_dist_09);
 MakeAlphaString(24,24,s_dist_10);
 sdatasiz=MakeAlphaString(26,50,s_data);
 if (orig[s_i_id])
 {
 pos=RandomNumber(0L,sdatasiz-8);
 s_data[pos]='o';
 s_data[pos+1]='r';
 s_data[pos+2]='i';
 s_data[pos+3]='g';
 s_data[pos+4]='i';
 s_data[pos+5]='n';
 s_data[pos+6]='a';
 s_data[pos+7]='l';
 }

 EXEC SQL INSERT INTO
 stock (s_i_id, s_w_id, s_quantity,
 s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05,
 s_dist_06, s_dist_07, s_dist_08, s_dist_09, s_dist_10,
 s_data, s_ytd, s_cnt_order, s_cnt_remote)
 values (:s_i_id, :s_w_id, :s_quantity,
 :s_dist_01, :s_dist_02, :s_dist_03, :s_dist_04, :s_dist_05,
 :s_dist_06, :s_dist_07, :s_dist_08, :s_dist_09, :s_dist_10,
 :s_data, 0, 0, 0);
 if (option_debug)
 printf("SID = %ld, WID = %ld, Quan = %ld\n",
 s_i_id, s_w_id, s_quantity);
 if (!(s_i_id % 100)) {
 EXEC SQL COMMIT WORK;
 printf(".");
 if (!(s_i_id % 5000)) printf(" %ld\n",s_i_id);
 }
 }
 EXEC SQL COMMIT WORK;
 printf(" Stock Done.\n");
 return;
sqlerr:
 Error();
}

/*==+
 | ROUTINE NAME
 | District
 | DESCRIPTION
 | Loads the District table
 | ARGUMENTS
 | w_id - warehouse id
 +==*/
void District(w_id)
 long w_id;
{

 EXEC SQL BEGIN DECLARE SECTION;
 long d_id;
 long d_w_id;
 char d_name[10];

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 127 of 130

 char d_street_1[20];
 char d_street_2[20];
 char d_city[20];
 char d_state[2];
 char d_zip[9];
 float d_tax;
 float d_ytd;
 long d_next_o_id;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading District\n");
 d_w_id=w_id;
 d_ytd=30000.0;
 d_next_o_id=3001L;
 for (d_id=1; d_id<=DIST_PER_WARE; d_id++) {

 /* Generate District Data */
 MakeAlphaString(6L,10L,d_name);
 MakeAddress(d_street_1, d_street_2, d_city, d_state, d_zip);
 d_tax=((float)RandomNumber(10L,20L))/100.0;

 EXEC SQL INSERT INTO
 district (d_id, d_w_id, d_name,
 d_street_1, d_street_2, d_city, d_state, d_zip,
 d_tax, d_ytd, d_next_o_id)
 values (:d_id, :d_w_id, :d_name,
 :d_street_1, :d_street_2, :d_city, :d_state, :d_zip,
 :d_tax, :d_ytd, :d_next_o_id);

 if (option_debug)
 printf("DID = %ld, WID = %ld, Name = %10s, Tax = %5.2f\n",
 d_id, d_w_id, d_name, d_tax);

 }
 EXEC SQL COMMIT WORK;

 return;
sqlerr:
 Error();
}

/*==+
 | ROUTINE NAME
 | Customer
 | DESCRIPTION
 | Loads Customer Table
 | Also inserts corresponding history record
 | ARGUMENTS
 | id - customer id
 | d_id - district id
 | w_id - warehouse id
 +==*/
void Customer(d_id, w_id)
 long d_id;
 long w_id;
{
 EXEC SQL BEGIN DECLARE SECTION;

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 128 of 130

 long c_id;
 long c_d_id;
 long c_w_id;
 char c_first[16];
 char c_middle[2];
 char c_last[16];
 char c_street_1[20];
 char c_street_2[20];
 char c_city[20];
 char c_state[2];
 char c_zip[9];
 char c_phone[16];
 char c_since[11];
 char c_credit[2];
 long c_credit_lim;
 float c_discount;
 float c_balance;
 char c_data[500];
 float h_amount;
 char h_data[24];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading Customer for DID=%ld, WID=%ld\n",d_id,w_id);

 for (c_id=1; c_id<=CUST_PER_DIST; c_id++) {

 /* Generate Customer Data */
 c_d_id=d_id;
 c_w_id=w_id;
 MakeAlphaString(8, 16, c_first);
 c_middle[0]='O'; c_middle[1]='E';
 if (c_id <= 1000)
 Lastname(c_id-1,c_last);
 else
 Lastname(NURand(255,0,999),c_last);
 MakeAddress(c_street_1, c_street_2, c_city, c_state, c_zip);
 MakeNumberString(16, 16, c_phone);
 if (RandomNumber(0L,1L))
 c_credit[0]='G';
 else
 c_credit[0]='B';
 c_credit[1]='C';
 c_credit_lim=50000;
 c_discount=((float)RandomNumber(0L,50L))/100.0;
 c_balance= -10.0;
 MakeAlphaString(300,500,c_data);

 EXEC SQL INSERT INTO
 customer (c_id, c_d_id, c_w_id,
 c_first, c_middle, c_last,
 c_street_1, c_street_2, c_city, c_state, c_zip,
 c_phone, c_since, c_credit,
 c_credit_lim, c_discount, c_balance, c_data,
 c_ytd_payment, c_cnt_payment, c_cnt_delivery)
 values (:c_id, :c_d_id, :c_w_id,
 :c_first, :c_middle, :c_last,
 :c_street_1, :c_street_2, :c_city, :c_state, :c_zip,

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 129 of 130

 :c_phone, :timestamp, :c_credit,
 :c_credit_lim, :c_discount, :c_balance, :c_data,
 10.0, 1, 0) ;

 h_amount=10.0;
 MakeAlphaString(12,24,h_data);
 EXEC SQL INSERT INTO
 history (h_c_id, h_c_d_id, h_c_w_id,
 h_w_id, h_d_id, h_date, h_amount, h_data)
 values (:c_id, :c_d_id, :c_w_id,
 :c_w_id, :c_d_id, :timestamp, :h_amount, :h_data);

 if (option_debug)
 printf("CID = %ld, LST = %s, P# = %s\n",
 c_id, c_last, c_phone);
 if (!(c_id % 100)) {
 EXEC SQL COMMIT WORK;
 printf(".");
 if (!(c_id % 1000)) printf(" %ld\n",c_id);
 }
 }
 printf("Customer Done.\n");

 return;
sqlerr:
 Error();
}

/*==+
 | ROUTINE NAME
 | Orders
 | DESCRIPTION
 | Loads the Orders table
 | Also loads the Order_Line table on the fly
 | ARGUMENTS
 | w_id - warehouse id
 +==*/
void Orders(d_id, w_id)
 long d_id, w_id;
{

 EXEC SQL BEGIN DECLARE SECTION;
 long o_id;
 long o_c_id;
 long o_d_id;
 long o_w_id;
 long o_carrier_id;
 long o_ol_cnt;
 long ol;
 long ol_i_id;
 long ol_supply_w_id;
 long ol_quantity;
 long ol_amount;
 char ol_dist_info[24];
 float i_price;
 float c_discount;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 130 of 130

 printf("Loading Orders for D=%ld, W= %ld\n", d_id, w_id);
 o_d_id=d_id;
 o_w_id=w_id;
 InitPermutation(); /* initialize permutation of customer numbers */
 for (o_id=1; o_id<=ORD_PER_DIST; o_id++) {

 /* Generate Order Data */
 o_c_id=GetPermutation();
 o_carrier_id=RandomNumber(1L,10L);
 o_ol_cnt=RandomNumber(5L,15L);

 if (o_id > 2100) /* the last 900 orders have not been delivered) */
 {
 EXEC SQL INSERT INTO
 orders (o_id, o_c_id, o_d_id, o_w_id,
 o_entry_d, o_carrier_id, o_ol_cnt, o_all_local)
 values (:o_id, :o_c_id, :o_d_id, :o_w_id,
 :timestamp, NULL, :o_ol_cnt, 1);
 EXEC SQL INSERT INTO
 new_order (no_o_id, no_d_id, no_w_id)
 values (:o_id, :o_d_id, :o_w_id);
 }
 else
 EXEC SQL INSERT INTO
 orders (o_id, o_c_id, o_d_id, o_w_id,
 o_entry_d, o_carrier_id, o_ol_cnt, o_all_local)
 values (:o_id, :o_c_id, :o_d_id, :o_w_id,
 :timestamp, :o_carrier_id, :o_ol_cnt, 1);

 if (option_debug)
 printf("OID = %ld, CID = %ld, DID = %ld, WID = %ld\n",
 o_id, o_c_id, o_d_id, o_w_id);

 for (ol=1; ol<=o_ol_cnt; ol++) {
 /* Generate Order Line Data */
 ol_i_id=RandomNumber(1L,MAXITEMS);
 ol_supply_w_id=o_w_id;
 ol_quantity=5;
 ol_amount=0.0;

 MakeAlphaString(24,24,ol_dist_info);

 if (o_id > 2100)
 EXEC SQL INSERT INTO
 order_line (ol_o_id, ol_d_id, ol_w_id, ol_number,
 ol_i_id, ol_supply_w_id, ol_quantity, ol_amount,
 ol_dist_info, ol_delivery_d)
 values (:o_id, :o_d_id, :o_w_id, :ol,
 :ol_i_id, :ol_supply_w_id, :ol_quantity, :ol_amount,
 :ol_dist_info, NULL);
 else
 EXEC SQL INSERT INTO
 order_line (ol_o_id, ol_d_id, ol_w_id, ol_number,
 ol_i_id, ol_supply_w_id, ol_quantity,
 ((float)(RandomNumber(10L, 10000L))/100.0,
 ol_dist_info, ol_delivery_d)

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 131 of 130

 values (:o_id, :o_d_id, :o_w_id, :ol,
 :ol_i_id, :ol_supply_w_id, :ol_quantity,
 :ol_amount,
 :ol_dist_info, datetime);

 if (option_debug)
 printf("OL = %ld, IID = %ld, QUAN = %ld, AMT = %8.2f\n",
 ol, ol_i_id, ol_quantity, ol_amount);

 }
 if (!(o_id % 100)) {
 printf(".");
 EXEC SQL COMMIT WORK;
 if (!(o_id % 1000)) printf(" %ld\n",o_id);
 }
 }
 EXEC SQL COMMIT WORK;

 printf("Orders Done.\n");
 return;
sqlerr:
 Error();
}

/*==+
 | ROUTINE NAME
 | MakeAddress()
 | DESCRIPTION
 | Build an Address
 | ARGUMENTS
 +==*/
void MakeAddress(str1,str2,city,state,zip)
 char *str1;
 char *str2;
 char *city;
 char *state;
 char *zip;
{
 MakeAlphaString(10,20,str1); /* Street 1*/
 MakeAlphaString(10,20,str2); /* Street 2*/
 MakeAlphaString(10,20,city); /* City */
 MakeAlphaString(2,2,state); /* State */
 MakeNumberString(9,9,zip); /* Zip */
}

/*==+
 | ROUTINE NAME
 | Error()
 | DESCRIPTION
 | Handles an error from a SQL call.
 | ARGUMENTS
 +==*/
void Error()
{
 printf("SQL Error %d\n", sqlca.sqlcode);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 132 of 130

 exit(-1);
}

/*==+
 | ROUTINE NAME
 | Lastname
 | DESCRIPTION
 | TPC-C Lastname Function.
 | ARGUMENTS
 | num - non-uniform random number
 | name - last name string
 +==*/
void Lastname(num, name)
 int num;
 char *name;
{
 int i;
 static char *n[] =
 {"BAR", "OUGHT", "ABLE", "PRI", "PRES",
 "ESE", "ANTI", "CALLY", "ATION", "EING"};

 strcpy(name,n[num/100]);
 strcat(name,n[(num/10)%10]);
 strcat(name,n[num%10]);

 return;
}

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 133 of 130

Appendix B: EXECUTIVE SUMMARY STATEMENT

The tables on the following two pages illustrate the format of the TPC Executive Summary Statement that must be used
to report the summary benchmark results. The latest version of the required format is available upon request from the
TPC administrator (see cover page).

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 134 of 130

 ½ inch from top
 7 ¼” edge of page

¾ inch ½ inch
from left from
edge of right
page edge of
 page

 10”

 ½ inch from bottom
 edge of page

Sponsor System Configuration TPC-C Rev
5.0

 (1) (1) Report Date:

Total System Cost TPC-C Throughput Price/Performance Availability Date

 (1) (1) (1) (1)

Processors Database Manager Operating System Other Software Number
 Of Users

 (2) (2) (2) (2) (2)

 (place configuration diagram here)

System Components
Processors
Memory
Disk Controllers
Disk Drives
Total GB of Storage
Tape Drives
Terminals

Style Legend:
Font – Times, bold
Size - (1) 20, 18, or 16 point
type
 (2) 12, 10 or 9 point type
otherwise use 10 or 12 point type
Outside box is 2 points wide
Interior lines are 1 point wide

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 135 of 130

Acme Data Widget Model RO90214/se TPC-C REV 5.0 EXECUTIVE SUMMARY
PAGE 2 OF 2

Corporation Client/Server Report Date: 30-February-1897

Description Part Number Third Party Unit Price Qty
Extended

Price
3 yr. Maint.

Price

Server Hardware Brand Pricing

RO90214,32MB,CDROM,NO HDD,MOUSE 201-A 15,995 1 15,995 3,839

RO90214 DUAL CPU UPGR CARD,1MB CACHE 25657 17,000 1 17,000 2,380

128MB SIMMS (4X32MB) FOR ECC MEM BD 82038 11,495 3 34,485 0

2GB 7200 RPM DISK MODULE 12009-HB Eric's 1 1,099 80 87,920 38,685

DESKSIDE CHASSIS 78900D Eric's 1 2,935 3 8,805 3,875

PCI LAN CONTROLLER/10 654 595 1 595 143

14'' EPA SVGA MONITOR 26019 480 1 480 116

101-KEYBOARD, PWR CORD G6001A-A 85 1 85 0

DIFF PCI TO SCSI HOST BUS ADAPTER 1111 995 2 1,990 478

ECC MEMORY BOARD FOR PC TOWER SYSTEMS 77016 695 1 695 0

SCSI CABLE,68P HD -68P HD, 10FT 1EZ10 Allison Corp. 2 130 4 520 0

Subtotal 168,570 49,516
Server Software
ACME UNIX K985 9,800 1 9,800 0

ACME SERVICEPLUS FOR UNIX K467 0 1 0 6,960

RDBMS & SQL (WITH 45% DISCOUNT) 123456789 Lena Rdbms 3 58,000 1 58,000 46,400

TX MON: 8 USER QQSQ123 12,000 1 12,000 0

TX MON: SERVICEPLUS QQSQ432SA 0 1 0 3,000

TXMON: UPG TO UNLMTD USERS QV318ASC9XN 23,000 1 23,000 0

Subtotal 102,800 56,360

Client Hardware
RO90200,32MB,CDROM,NO HDD,MOUSE 200-A 12,995 1 12,995 4,622

128MB SIMMS (4X32MB) FOR ECC MEM BD 82038 11,495 2 22,990 0

PCI LAN CONTROLLER/10 7422 595 1 595 130

Subtotal 36,580 4,752

Client Software
ACME UNIX K980 2,250 1 2,250 0

ACME UNIX SERVICEPLUS: UNLMTD USRS K466 0 1 0 24,000

ACME UNIX UPGRADE TO UNLMTD USR P001ASA9FN 24,000 1 24,000 0

Subtotal 26,250 24,000
Network Components
ED FIE, 256-PORT AUI 499578T256 Ed's 1 7,000 5 35,000 0

LIGHTER 10 BASE-T XCVR AUI TO RJ45 40064 Lighter 1 109 2 218 72

ED IEEE802.3 TRANCEIVER 4540-B Ed's 1 289 2 578 219

Subtotal 35,796 291

Other Discounts* ($12,000) ($8,000)

Total $357,996 $126,919
Notes:

* Dollar volume discount 1.6% & 3-year prepaid maintenance Three-Year Cost of Ownership: $484,915
1=CompLeo, 2=Allison Corp., 3=Lena RDBMS tpmC Rating: 4229.11
Audited by Benchmarks R' Us $ / tpmC: 114.66

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 136 of 130

Example

Acme Sponsor

Description 3rd Party

 Brand Pricing

2 GB Disk El Cheapo CompLeo want to hilite

2 GB Disk (Acme) CompLeo want to hilite

2 GB Disk (Acme) (Acme) typical

2 GB Disk El Cheapo (Acme) rare

Note: Values in parenthesis are not displayed in pricing sheet.

Intent: Give visibility to top 2 cases to maintain relevance of TPC-C pricing.

TPC Benchmark™ C - Standard Specification, Revision 5.0 - Page 137 of 130

Appendix C: NUMERICAL QUANTITIES SUMMARY

The following table partially illustrates how to summarize all the numerical quantities required in the Full Disclosure
Report:

 MQTh, computed Maximum Qualified Throughput 105.55 tpmC

 Response Times (90th percentile/Average/maximum) in seconds
 - New-Order 4.9 / 2.8 / 28.0
 - Payment 2.1 / 1.0 / 12.8
 - Order-Status 3.5 / 1.7 / 9.4
 - Delivery (interactive portion) 0.5 / 0.2 / 0.9
 - Delivery (deferred portion) 15.2 / 8.1 / 45.5
 - Stock-Level 17.8 / 9.5 / 29.4
 - Menu 0.2 / 0.1 / 0.9

 - Response time delay added for emulated components 0.35 seconds

 Transaction Mix, in percent of total transactions
 - New-Order 44.5 %
 - Payment 43.1 %
 - Order-Status 4.1 %
 - Delivery 4.2 %
 - Stock-Level 4.1 %

 Keying/Think Times (in seconds), Min. Average Max.
 - New-Order 9.2 / 6.1 18.5 / 12.2 37.1 / 25.2
 - Payment 1.6 / 6.1 3.1 / 12.2 6.2 / 24.7
 - Order-Status 1.1 / 5.1 2.1 / 10.2 4.2 / 21.2
 - Delivery 1.1 / 2.8 2.1 / 5.1 4.3 / 10.3
 - Stock-Level 1.0 / 2.7 2.1 / 5.1 4.3 / 10.2

 Test Duration
 - Ramp-up time 20 minutes
 - Measurement interval 120 minutes
 - Number of checkpoints 4
 - Checkpoint interval 30 minutes
 - Number of transactions (all types)
 completed in measurement interval 28,463

 (and all other numerical quantities required in the Full Disclosure Report)

