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1. Introduction

Over the last five years, and most recently under the sponsorship of the Computer
Measurement Group (CMG), the Performance Measurement Working Group (PMWG) -
- a group comprised of representatives from companies like: Amdahl, AT&T/NCR, BGS,
Hitachi, HP, IBM, Instrumental, OSF, Sequent and many others -- has been designing a
framework for the capture and transport of distributed performance data called the
Universal Measurement Architecture or UMA (pronounced “you-mah”) for short
[PMWG].  This level of architectural sophistication is required to address the difficulties
of measuring performance across many software layers in the many geographical locations
of a modern distributed computing environment.

The UMA reference model defines four layers and two interfaces as shown in Figure 1.
These layers and interfaces are briefly described from the bottom up, starting with the
Data Capture Layer.

• Data Capture Layer: The Data Capture Layer  is responsible for collecting raw data.
Its architecture together with the Data Capture Interface (DCI) allow data from
multiple sources to be collected by a single consumer above the DCI, and this in turn
improves the synchronization of the data collection.

• Data Capture Interface: The Data Capture Interface is the interface between the
Measurement Control Layer and the Data Capture Layer.  It provides the means for
dynamically extending data collection to new providers such as databases without
affecting existing programs. 

• Measurement Control Layer: The Measurement Control Layer schedules and
synchronizes data collection through the Data Capture Interface.



• Data Services Layer: The Data Services Layer accepts measurement requests from
Measurement Application Programs (MAPs) through the Measurement Layer
Interface (MLI), and distributes data to the destination requested by the MAP.  A
destination may include, the MAP itself, a private file or the UMA Data Storage
(UMADS), which will be described later.

Note that the interface between the Data Services Layer and the Measurement Control
Layer is not formally specified.  These two layers, though functionally distinct, and
which constitute a logical service layer for the MLI, may be combined in some
implementations.

Agents at the Data Capture Interface
Agents may be created directly at the DCI in cases where neither historical data nor
access to distributed data are needed by the agent.

Measurement Layer Interface
The Measurement Layer Interface (MLI) is the interface between the Measurement
Application Layer and the Data Services Layer.  It provides the medium for all
interactions between a MAP and UMA, thus isolating the application for the
implementation details of the rest of UMA.  Separate instances of the Measurement
Layer Interface exist as a library linked to each active MAP.

The Measurement Layer Interface allows transparent communication across networks,
therefore a MAP running on one system can request and examine data from another
system.  Together with the Data Services Layer, it provides an infrastructure for the
distribution of data over large numbers of heterogeneous sites and multiple platforms.

Measurement Application Layer
The Measurement Application Layer consists of the various Measurement Application
Programs (MAPs) that provide services for technical support of management goals.
These MAPs may consist of performance monitors, capacity planning tools, tuning
advisors, and so on.

Amdahl Corporation has developed an implementation of the MLI and agent portions of

the UMA Reference Model (labeled A+UMA ® [AUMA]) and Hatachi Corporation has
developed a working DCI portion.  This work is a necessary part of the X/Open branding
process.  In addition, Amdahl has developed a set of MAP-level products to support
enterprise performance management.  This paper presents an overview of the UMA
architecture and a status report on A+UMA engineering developments.

2. Open System Measurement Problems

The commercialization of POSIX-based computing is continuing at a rapid pace adding
capabilities not just expected, but desperately needed by operators in commercial
datacenters.  One such feature is performance management.  Those familiar with
mainframe data processing environments are used to having sophisticated tools available



to determine resource utilization, predict system capacities and growth paths, and even to
compare CPU models for making procurement decisions.
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 Figure 1.  The UMA Reference Model

Although the open system concept is creating a revolution in applications development
and system migration paths, certain capabilities-such as performance management-have
not been standardized.  Currently, no UNIX system vendor provides enough performance
management functionality, and certainly no two vendors provide equivalent functionality.

Key areas being considered by the CMG/PMWG include performance data availability
and interfaces for its collection.  Until the data and interfaces are standardized, each
computer vendor, performance software vendor, or large end user is faced with the task of
kernel modification to collect the necessary data, development of a proprietary kernel
interface to move the data to user-space, and development of "roll-your-own"
performance monitoring and management software system.  Until such interfaces are
standardized, no compatible performance management tools can be built because of the



cost of their migration between operating system versions or POSIX-based system
implementations.

As open systems become the platforms of choice for larger, faster, and more complex
computer systems, there is an increased need to effectively manage these systems. But
there exists little software to support performance management of these complex
systems. For example, administrators of standard UNIX systems must rely on the
system activity reporter (SAR) data to manage their systems.  For reasons described
below, this data does not meet all the needs of system administrators.  Operators
responsible for the performance of large applications, such as those involving database
applications, must rely on process accounting data to measure the activity of their
application, but when the application is distributed, this per platform performance data is
difficult to correlate.

There are several reasons for the lack of performance management software. One reason is
that many of the desired metrics are not available. Another reason is the fear that release-
to-release kernel changes will make it necessary to frequently modify performance-related
applications.  This discourages developers from using any but the most basic metrics or
developing any but the most basic applications, particularly in cases where the
application must execute on platforms supplied by different vendors. There are,
furthermore, no well-defined interfaces for obtaining even the existing performance data
from the kernel, and the current access methods, are restrictive and expensive.

3. Current UNIX Performance Measurement Architecture

Considering UNIX as a more mature open systems example, the /dev/kmem interface has
historically been the primary interface used by UNIX System performance measurement
utilities for extracting data from the kernel.  If a program is aware of the name of a
particular data structure, it can find the virtual address of that data structure by looking at
the symbol table of the UNIX bootable object file.  It can then open /dev/kmem to seek
to and read the value of that data structure.  The advantage of this approach is its
generality: if the address of a data structure can be found, its value can be read.  But its
generality is also a disadvantage.  Since almost any data structure can be used to provide
performance data, the tendency is to do so without regard to whether it is supported.
This makes it very difficult to maintain a performance application across releases when
data structures change.  For example, programs such as ps and sadc have been notoriously
difficult to maintain from release to release.

There is also the issue of processing cost.  The retrieval of each virtually contiguous piece
of information requires a seek system call and a read system call of /dev/kmem.  If there
are many such pieces, the CPU costs of gathering the information can be very high. And
since each piece requires a separate seek and read, it is very hard to guarantee that the data
obtained is consistent.

Then there is the issue of access permissions. For security reasons, /dev/kmem is not set
to be readable by ordinary users. Thus programs such as ps and sadc must be run as



setuid or setgid programs. Ordinary programs must invoke either ps or sadc and read data
either through pipes or files. This adds to the cost of accessing this information.

Then there is the issue of binary compatibility.  In order to reduce the number of seeks
and reads necessary to obtain the data, many metrics are combined into a single data
structure (e.g. sysinfo in UNIX). The result is that programs must be aware of the layout
and contents of the data structure. If the data structure layout or content change
significantly between releases, binary compatibility cannot be maintained; the programs
must be recompiled with new headers that reflect the new data structure layout and
contents.

Another issue to consider is that of data synchronization.  Using a variety of user space
collectors to gather data can result in skewed collection times for various data items.  This
is illustrated in Figure 1.  Here the collection times from sar and stats do not reliably
correspond (due to scheduling delays for each process) with the result that the usefulness
of the data is impaired.  A common source of user level collection would reduce such time
skews.

Finally, we must consider commercial distributed computing environments.  In the past,
performance analysis activities of a single platform at a time were meaningful because
most, if not all, of the processing of a user interaction took place on a single platform.  In
the emerging open systems environment, however, this is no longer the case.  Figure 2
illustrates the situation where a user interaction is serviced by processing on a number of
platforms and in addition, these platforms may be supplied by a variety of vendors.  In
this case, the response time experienced by the user is dependent on the delays on the
individual service platforms and on the delays of various network components.  To carry
out an analysis of response time requires that data be captured and tagged with
identification at least at a transaction level and that there be a mechanism that can gather
this data from distributed systems where it is captured.

To help address the above data collection issues and limitations, the CMG/PMWG has
developed the following three specifications for the Universal Measurement Architecture
(UMA):

• UMA Performance Measurement Data Pool Specification,

• UMA Data Capture Interface Specification (DCI),

• UMA Measurement Layer Interface Specification (MLI).

The rest of this paper reports on a working implementation of A+UMA and how it is
used to render performance flight recorders for large-scale commercial distributed
computing environments.

4. Timing Chains and Flight Recorders



The view depicted in Figure 2 is not far removed from that of computer performance
models.  More specifically, a performance model analysis requires time-correlated data for
local performance measures of:

• CPU user and system service times (not just percentages)
• I/O subsystem service times
• Network latencies
• DBMS latch-wait statistics
• DBMS process service times

per business transaction type.

R1 O R2 O+ R3 O+ R4+

TRANSACTION MANAGEMENT
		                 ENGINES

DATABASE ENGINES

Figure 2.  Components of a Distributed Transaction

A performance model aims to reconcile the total business transaction round-trip response
time with the presence of local system bottlenecks.  In general, this requires knowledge of



delays at each contiguous software component that handles a business transaction during
its "flight" through the system.  Without synchronized instrumentation, all we have is a
series of “black boxes”.  The UMA architecture, on the other hand, offers the possibility
of implementing the type of black boxes used in aircraft i.e., the "flight recorder".  Just
like the FAA, a common recording format and common playback tools become a
necessity.  One of us (NJG), has proposed the same solution to address some of the
credibility issues currently faced by benchmarking organizations [GCMG] such as: TPC
[GTPC] and SPEC [GSPEC].

On average, the sum of all the local delays (residence times) should add up to the
measured response time for that transaction type, within some prescribed tolerance.  The
performance modeler sees the flight of the transaction as a unit of work consuming
resources at a series of queueing centers (Figure 2) representing the various software
components.  The number of queues is determined by the location of measurement
probes.

Figure 3.

More formally, the mean residence times (wait + service) must sum to the average end-to-
end response time.  Bottleneck detection requires that the utilization of computational
resources also be measured while the transaction is in residence at each center.

Figure 4.



From the user standpoint, on the other hand, sees the flight of the transaction as passing
through a linked chain of components (Figure 4).  The length of the chain corresponds to
the system response time, RT, for that transaction.  The number of links in the chain,
once again, is given by the probe points.  The size of each link corresponds to the
residence time at each of the queueing centers in Figure 3.  Since the residence times are
different for each component, not all links have the same size but there cannot be any
missing links!  A little more formally:

RT = ∑
links

 
 size (link) .

The distribution of link sizes, shown in Figure 4 as shaded links, is just one possibility.
Additional probe points could be inserted, for example, within the DBMS software such
that link would be replaced by a sub-chain of (unshaded) smaller links.

For probes, most Unix systems have SAR data (at a minimum), MVS systems have RMF
and SMF performance data, and DBMSs can report performance statistics.  The problem
remains, however, that such performance data is not only incomplete, it has neither a
common format nor a common repository and carries a high collection overhead
(especially in the case of database management systems).  Some vendors offer more
sophisticated performance tools than the typical UNIX suite but these also tend to be
point solutions that carry a lot of proprietary baggage.

Moreover, every significant software component would report performance data
differently, in different files, in different places and anyone who wished to review those
data would not only need to have the corresponding tools, but also the ability to assemble
such discontiguous data into the correct time-ordered sequence.

5. Unification Through UMA-fication

Figure 5 gives a schematic impression of how UMA ties together distributed data
collection along the timing chain (oriented vertically on the left side of the Figure), with
storage in a location-transparent database that can then be read by the appropriate
Measurement Application Program (MAP) which is typically a GUI-based analysis tool
of the type shown in Figure 6 below.  Application probes are realized via a procedure
call, umaPostData(), in the current A+UMA implementation.  At present this is done in
lieu of having an integrated DCI layer in A+UMA.

One of the most important strengths of UMA is that control of both data collection and
data filtering are supported via a set of APIs [AUMA] now accepted as base documents



by X/Open.  In this sense, UMA is an Open Architecture that is vendor-independent.
Vendor-specific data collection is handled via these APIs.  The UMA architecture
incorporates the notion of a time-indexed database called UMADS.  A common set of
software probes can write performance data into UMADS and a common MAP interface
can read historical performance data from the same UMADS database.  The data format
seen by MAPs is specified by the UMA standard but the actual field names for UMA
classes is vendor or application specific.  In this way UMA is able to provide a flight
recording and playback mechanism to reveal how particular business transactions are
performing.  This is precisely the kind of integrated information that is required for both
bottleneck analysis and capacity forecasting.

Figure 5.

Table 1 contains time-indexed UMADS data, in ASCII format, to show how it is
organized into class and subclass data structures for the case of some selected Unix kernel
performance metrics.  Of course, a human would prefer to “replay” the transaction flights
graphically using specially developed MAPs of the type shown in Figure 6.  In this MAP



there is the capability of sweeping back and forth through the UMADS historical records.
The UMADS contains performance data from the DBMS and the business application;
not just the operating system.



Table 1.

Although the format in Table 1 resembles SAR output, any similarity is purely
superficial.  Many other system performance metrics are attached to each UMADS
interval record.  In fact, a page three foot wide would be required to display all the fields
belonging to this example.

Figure 6.

6. Summary

We have presented an overview of the Universal Measurement Architecture (UMA) that
is being standardized by X/Open.  Amdahl was a founding member of the PMWG and
has developed a non-DCI subset of the UMA specification (A+UMA) as a suite of
performance management products.  These A+UMA products serve the dual purpose of



offering proof-of-concept for the X/Open standardization process and addresses the
needs of managing performance in a commercial DataCenter setting.

A+UMA products have now been deployed at several large commercial accounts.
Examples of how A+UMA flight recorders are helping to solve performance management
problems may be the subject of a future report.
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