Implementing Performance Flight Recorders
In a Distributed Computing Environment
with A+UMA

Neil J. Gunther
Computer Dynamics Consulting, Mountain View, CA 94040
guntherl37@aol.com, gunther@oes.amdahl.com

Leon M. Traister
Amdahl Corporation, Sunnyvale, CA 95054
Imtra@oes.amdahl.com

1. Introduction

Over the last five years,and most recently under the sponsorshipof the Computer
Measurement Group (CMG), the Performance Measurement Working G?MMWG) -

- a group comprised of representatives from companiesAiketahl, AT&T/NCR, BGS,

Hitachi, HP, IBM, Instrumental OSF, Sequentand many others-- hasbeendesigninga
framework for the capture and transport of distributed performancedata called the
Universal Measurement Architecture or UMA (pronounced“you-mah”) for short
[PMWG]. This level of architectural sophisticatiemrequiredto addresghe difficulties

of measuring performance across many software layers in the many geographical locations
of a modern distributed computing environment.

The UMA referencemodeldefinesfour layersandtwo interfacesasshownin Figure 1.
Theselayersandinterfacesare briefly describedrom the bottom up, startingwith the
Data Capture Layer.

» Data Capture Layer: The Data Capture Layer is responsible for collectang data.
Its architecturetogetherwith the Data Capture Interface (DCI) allow data from
multiple sources to be collected by a singbmsumerabovethe DCI, andthis in turn
improves the synchronization of the data collection.

» Data Capture Interface: The Data Capturelnterfaceis the interfacebetweenthe
Measurement Control Layer armige Data CaptureLayer. It providesthe meansfor
dynamically extendingdata collectionto new providers such as databasesvithout
affecting existing programs.

* Measurement Control Layer: The MeasurementControl Layer schedulesand
synchronizes data collection through the Data Capture Interface.

» Data ServiceslLayer: The Data ServicesLayer acceptsmeasurementequestsfrom
MeasurementApplication Programs (MAPs) through the MeasurementLayer
Interface(MLI), anddistributesdatato the destinationrequestedoy the MAP. A
destinationmay include, the MAP itself, a private file or the UMA Data Storage
(UMADS), which will be described later.

Note that the interfacebetweenthe Data ServicesLayer and the MeasurementControl
Layer is not formally specified. Thesetwo layers, though functionally distinct, and
which constitute a logical service layer for the MLI, may be combined in some
implementations.

Agents at the Data Capture Interface

Agents may be createddirectly at the DCI in caseswhere neither historical data nor
access to distributed data are needed by the agent.

Measurement Layer Interface

The Measurement_ayer Interface (MLI) is the interface betweenthe Measurement
Application Layer and the Data ServicesLayer. It provides the medium for all
interactions betweena MAP and UMA, thus isolating the application for the
implementationdetails of the rest of UMA. Separateinstancesof the Measurement
Layer Interface exist as a library linked to each active MAP.

The Measurementayer Interfaceallows transparentcommunicationacrossnetworks,
thereforea MAP running on one systemcan requestand examinedata from another
system. Togetherwith the Data ServicesLayer, it providesan infrastructurefor the
distribution of data over large numbers of heterogeneous sites and multiple platforms.

Measurement Application Layer

The MeasuremenApplication Layer consistsof the various Measuremen®pplication
Programs(MAPSs) that provide servicesfor technical support of managemenigoals.
These MAPs may consist of performancemonitors, capacity planning tools, tuning
advisors, and so on.

Amdahl Corporation has developed an implementatiothe MLI andagentportions of

the UMA Reference Model (labeled+UMA ® [AUMA]) andHatachiCorporationhas
developed a working DCI portion. This work is a necessary part of/tbpen branding
process. In addition, Amdahl has developeda set of MAP-level productsto support
enterpriseperformancemanagement. This paper presentsan overview of the UMA

architecture and a status report on A+UMA engineering developments.

2. Open System Measurement Problems

The commercializatiorof POSIX-basedomputingis continuing at a rapid pace adding
capabilities not just expected,but desperatelyneededby operatorsin commercial
datacenters. One such feature is performance management. Those familiar with
mainframedataprocessingenvironmentsare usedto having sophisticatedools available

to determine resource utilization, predict system capacities and growth paths, aba even
compare CPU models for making procurement decisions.

Measurement Application Layer

System
Performance
Monitor

Network System Tuning
Monitor Model Advisor Agents

| MLI (Measurement Layer Interface) I
Data Services Layer | Measurement Control Layer
* access network | © merge requests
« format data to standards » synchronize capture Agents
* maintain archive | «timestamp

« distribute data |

I DCI (Data Capture Interface) I

Data Capture Layer
Kernel Data i Application Data
* Cpu * subsystems:
» disk | -oltp
* memory | - dbms
* network | * user applications
* events | -events
« traces s traces

Figure 1. The UMA Reference Model

Although the opensystemconceptis creatinga revolutionin applicationsdevelopment

and systemmigration paths, certain capabilities-suchas performancemanagement-have
not been standardized. Currently, no UNIX system vendor provides enough performance
management functionality, and certainly no two vendors provide equivalent functionality.

Key areasbeingconsideredy the CMG/PMWG include performancedata availability
and interfacesfor its collection. Until the data and interfacesare standardizedgeach
computer vendor, performance software vendor, or large end user is faced with tife task
kernel modification to collect the necessarydata, developmentof a proprietary kernel
interface to move the data to user-space,and developmentof "roll-your-own"
performancemonitoring and managemensoftware system. Until such interfacesare
standardizedno compatibleperformancenanagementools can be built becauseof the

cost of their migration betweenoperating system versions or POSIX-basedsystem
implementations.

As opensystemsbecomethe platforms of choicefor larger, faster,and more complex
computersystems,thereis anincreasecheedto effectively managethesesystems.But
there exists little software to support performance managementof these complex
systems.For example,administratorsof standardUNIX systemsmust rely on the
systemactivity reporter (SAR) datato managetheir systems. For reasonsdescribed
below, this data does not meetall the needsof system administrators. Operators
responsibldor the performanceof large applications,such as thoseinvolving database
applications,must rely on processaccountingdata to measurethe activity of their
application, but when the application is distributed, this per platform performancis data
difficult to correlate.

There are several reasons for the lack of performance management software. Oris reason
that many of the desired metrics are not available. Anodsmonis the fear that release-
to-release kernel changes will make it necessary to frequantlyfy performance-related
applications. This discouragesleveloperdrom usingany but the most basicmetricsor
developingany but the most basic applications, particularly in caseswhere the
application must execute on platforms supplied by different vendors. There are,
furthermore,no well-definedinterfacesfor obtainingeventhe existing performancedata

from the kernel, and the current access methods, are restrictive and expensive.

3. Current UNIX Performance Measurement Architecture

Considering UNIX as a more mature oparstemsexample the /dev/ikmem interfacehas
historically been the primary interfacsedby UNIX Systemperformanceaneasurement
utilities for extractingdatafrom the kernel. If a programis aware of the name of a
particular data structure, it can find the virtual address of that data structioaking at
the symbol tablef the UNIX bootableobjectfile. It canthenopen/dev/kmem to seek
to and readthe value of that data structure. The advantageof this approachis its
generality: ifthe addressof a datastructurecanbe found, its valuecanberead. But its
generality is also a disadvantaggincealmostany datastructurecanbe usedto provide
performancelata,the tendencyis to do so without regardto whetherit is supported.
This makesit very difficult to maintaina performanceapplicationacrossreleasesvhen
data structures change. For example, programs syshaasgisadc have beemotoriously
difficult to maintain from release to release.

There is also the issue of processing cost. The retrieval of each vidoaliguouspiece

of information requires aeeksystemcall anda readsystemcall of /dev/ikmem. If there

are many such pieces, the Clebktsof gatheringthe information canbe very high. And

since each piece requires a separate seek and read, it is very hard to guarantee that the data
obtained is consistent.

Then there is the issue of accgssmissionsFor security reasons/dev/kmem is not set
to be readableby ordinary users.Thus programssuch as ps and sadc must be run as

setuid or setgid programs. Ordinary programs must invoke eifisaor sadc andreaddata
either through pipes or files. This adds to the cost of accessing this information.

Thenthereis the issueof binary compatibility. In orderto reducethe numberof seeks
and readsnecessaryto obtain the data, many metrics are combinedinto a single data
structure (e.gsysinfo in UNIX). The result is thaprogramsmust be awareof the layout
and contentsof the data structure. If the data structure layout or content change
significantly betweenreleasesbinary compatibility cannotbe maintained;the programs
must be recompiledwith new headershat reflect the new data structure layout and
contents.

Another issue to consider ikat of datasynchronization. Using a variety of userspace
collectors to gather data can result in skewed collection times for various data Tibrss.
is illustratedin Figurel. Here the collection times from sar and stats do not reliably
correspond (due to scheduling delays for each process) with thethegulte usefulness
of the data is impaired. A common source of user level collection wedigtesuchtime
skews.

Finally, we must considercommercialdistributedcomputingenvironments. In the past,
performanceanalysisactivities of a single platform at a time were meaningfulbecause
most, if not all, of the processing of a user interaction took mlacesingle platform. In
the emergingopen systemsenvironmenthowever,this is no longer the case. Figure 2
illustrates the situation where a user interactioseivicedby processingon a numberof
platforms and iraddition, theseplatforms may be suppliedby a variety of vendors. In
this case the responsdime experiencedy the useris dependenbon the delayson the
individual service platforms and on the delays of varioetsvork components.To carry
out an analysis of responsetime requiresthat data be capturedand tagged with
identification at least at ansactiornlevel andthat therebe a mechanisnthat cangather
this data from distributed systems where it is captured.

To help addresghe abovedatacollectionissuesandlimitations, the CMG/PMWG has
developed the following three specificatidios the UniversalMeasuremenArchitecture
(UMA):

* UMA Performance Measurement Data Pool Specification,
* UMA Data Capture Interface Specification (DCI),
* UMA Measurement Layer Interface Specification (MLI).

The restof this paperreportson a working implementationrof A+UMA and how it is
used to render performanceflight recordersfor large-scalecommercial distributed
computing environments.

4. Timing Chains and Flight Recorders

The view depictedin Figure 2 is not far removedfrom that of computerperformance
models. More specifically, a performance model analysis requires time-correlated data for
local performance measures of:

» CPU user and system service times (not just percentages)
* /O subsystem service times

* Network latencies

* DBMS latch-wait statistics

* DBMS process service times

per business transaction type.

N ————”

—

L
~——————
\/
\ — \/
TRANSACTION MANAGEMENT DATABASE ENGINES
(i ENGINES

R1 ® @ R4

e e e R

Figure 2. Components of a Distributed Transaction

A performance model aims to reconcile the total busitrassactiorround-trip response
time with the presence of local system bottlenecks. In general, this reknoreledgeof

delays at each contiguous software compotiegithandlesa businesgransactionduring
its "flight" throughthe system. Without synchronizednstrumentationall we haveis a
series of “black boxes”. The UMA architecture, the other hand,offers the possibility
of implementingthe type of black boxesusedin aircrafti.e., the "flight recorder”. Just
like the FAA, a common recording format and common playback tools becomea
necessity. One of us (NJG), has proposedthe samesolution to addresssomeof the
credibility issues currentlfacedby benchmarkingprganizationgGCMG] suchas: TPC
[GTPC] and SPEC [GSPEC].

On average,the sum of all the local delays (residencetimes) should add up to the

measured response time for that transaction type, within poeseribedolerance. The

performancemodelerseesthe flight of the transactionas a unit of work consuming

resourcesat a seriesof queueingcenters(Figure 2) representingthe various software

components. The numberof queuesis determinedby the location of measurement
probes.

Distributed Software Components

UlProcess Comms Appin. DBMS Appin. comms Ul Process
> TIO IO - IO IO 10 -+ 1[0 + M0+
-

End to End Response Time

Figure 3.

More formally, the mean residence times (wait + service) must sum to the agathge
endresponsdime. Bottleneckdetectionrequiresthat the utilization of computational
resources also be measured while the transaction is in residence at each center.

Residence Time Chain
Comms Comms

Ul Process Appin. DBMS Appln. Ul Process

Figure 4.

From the user standpoint, on the othand,seesthe flight of the transactiomas passing
through a linked chain of components (Figure #he length of the chaincorrespondgo
the systemresponsdime, RT, for that transaction. The numberof links in the chain,
onceagain,is given by the probe points. The size of eachlink correspondsto the
residencdime at eachof the queueingcentersin Figure3. Sincethe residencdimesare
differentfor eachcomponentnot all links havethe samesize but there cannotbe any
missing links! A little more formally:

RT = 3 size (link) .
links

The distribution oflink sizes,shownin Figure4 asshadedinks, is just one possibility.
Additional probe points could be insertédy example within the DBMS softwaresuch
that link would be replaced by a sub-chain of (unshaded) smaller links.

For probes, most Unix systems have SAR data (at a minimum), MVS systems have RMF
and SMF performance data, and DBMSs can report performance statidtieproblem
remains,however,that such performancedatais not only incomplete,it has neithera
common format nor a common repository and carries a high collection overhead
(especiallyin the caseof databasemanagemensystems). Some vendorsoffer more
sophisticatecperformanceools thanthe typical UNIX suite but thesealso tend to be

point solutions that carry a lot of proprietary baggage.

Moreover, every significant software component would report performance data
differently, in differentfiles, in different placesandanyonewho wishedto review those
data would not only need to have the corresponding tools, but also the alakisetoble
such discontiguous data into the correct time-ordered sequence.

5. Unification Through UMA-fication

Figure 5 gives a schematicimpressionof how UMA ties together distributed data
collectionalongthe timing chain (orientedvertically on the left side of the Figure), with
storagein a location-transparentatabasethat can then be read by the appropriate
Measurement Application Program (MAP) whichtypically a GUI-basedanalysistool
of the type shownin Figure6 below. Application probesare realizedvia a procedure
call, umaPostData(), in the current A+UMAImplementation. At presentthis is donein
lieu of having an integrated DCI layer in A+UMA.

One of the most important strengtbSUMA is that control of both datacollectionand
data filtering are supported via a sé¢tAPIs [AUMA] now acceptedas basedocuments

by X/Open. In this senselUMA is an Open Architecturethat is vendor-independent.
Vendor-specificdata collection is handled via these APIs. The UMA architecture
incorporateghe notion of a time-indexeddatabasecalled UMADS. A commonset of
software probes can write performance data into UMADSaacaimmonMAP interface
can read historicgberformancedatafrom the sameUMADS database.The dataformat
seenby MAPs is specifiedby the UMA standardbut the actualfield namesfor UMA
classess vendoror applicationspecific. In this way UMA is ableto provide a flight
recordingand playback mechanismo reveal how particular businesstransactionsare
performing. This is precisely thend of integratedinformationthat is requiredfor both
bottleneck analysis and capacity forecasting.

CMG/PMWG Universal Measurement Architecture

Distributed
Software Components Performance
Monitoring
- MAP
| . | | Performance
. B Modeling
. r MAP
= = ‘ Data
Management
: MAP
= Put UMA data —
UMA
B Get UMA data
Data Storage

Figure 5.

Table 1 containstime-indexedUMADS data, in ASCII format, to show how it is
organized into class and subclass data structures for the case afedectedUnix kernel
performance metrics. Of course, a human would prefer to “replayfahsactiorflights
graphically using specially developed MAPs of the type shown in Figure 6. In this MAP

there is the capability of sweeping back and forth through the UMADS histogimaids.
The UMADS containsperformancedatafrom the DBMS andthe businessapplication;
not just the operating system.

CLA3S: Processorx
SUBCLASS: Global Measured Processor Times - Bazic Segment

Timestang procy_id wusx_tm/s sys_tmfs intr_tm/s wailt_tmis idle_tm/s
(usec) (usec) (usec) (uzec) (usec)

03/03/94 11:51:00 0 22540.77 130540.45 0.00 34232.87 762661.94
03/053/94 11:51:00 1 39397.34 150326.14 0.00 69386.36 710916.19
03/05/94 11:52:00 0 8165.23 266453.06 0.00 26162.06 699043.56
03/03/94 11:52:00 1 26495.33 293948 .22 0.00 21829.49 657550.38

CLASS: Processorx
SUBCLASS: Global Processor Counters - Basic Segment

Timestang procr_id sysealls/s hard_intr/s soft_intr/s voln_swteh/s
03/03/94 11:51:00 0 192.27 0.00 192 .27 139.63
03/053/94 11:51:00 1 217 .98 0.00 217 .98 140 .47
03/05/94 11:52:00 0 53.07 0.00 53.07 143 .40
03/03/94 11:52:00 1 106 .42 0.00 106 .42 145 .52

CLASS: Processorx
SUBCLASS: Global Processor Counters - Extended Segment

Timestang procr_id ext_intx/s prog_intr/s io_intr/s
03/03/94 11:51:00 0 0.00 0.00 120.36
03/053/94 11:51:00 1 0.00 0.00 276 .98
03/05/94 11:52:00 0 0.00 0.00 122 .47
03/03/94 11:52:00 1 0.00 0.00 309.87

CLASS: Memoxy
SUBCLASS: Global Real Memoxy Counters - Basic Segment

Timestang user free boache system wusr_priv usr_share

(kb) (kb) (kb) (kb) (kb) (kb)

03/053/94 11:51:00 0 2917 0 0 0 0

03/08/94 11:52:00 0 2908 0 0 0 0
CLASS: Memoxy

SUBCLASS: Global Paging Counters - Bazic Segment

Timestang procx_id pa_£flt/s page_in_pg/s page_out_pqgls page_in_op:
03/03/94 11:51:00 0 9.88 2.76 1.78 0
03/03/94 11:51:00 1 7.23 1.88 4.45 0

03/08/94 11:52:00 0 0.37 0.23 0.13 0

Table 1.

Although the format in Table 1 resemblesSAR output, any similarity is purely
superficial. Many other system performancemetrics are attachedto each UMADS
interval record. In fact, a page three faatle would be requiredto display all the fields
belonging to this example.

e 03 [[[[

-l

R |

Figure 6.

6. Summary

We have presented an overview of theiversalMeasuremenArchitecture(UMA) that
is beingstandardizedy X/Open. Amdahlwas a foundingmemberof the PMWG and
has developeda non-DCI subsetof the UMA specification(A+UMA) as a suite of
performance management products. These A+UW@ductsservethe dual purposeof

offering proof-of-conceptfor the X/Open standardizationprocessand addresseghe
needs of managing performance in a commercial DataCenter setting.

A+UMA products have now been deployed at several large commercial accounts.
Examples of how A+UMA flight recorders are helpitmysolve performancemanagement
problems may be the subject of a future report.

7. References

[AUMA] The interested reader can find more information about the UMA
specificationand A+UMA performancananagemenmethodologyat Amdahl’'s web
site URL: http://www.ccc.amdahl.com/doc/products/oes/pm.oes/perfhome.html.

[GCMG] N.J. Gunther,"The Answer is Still 42 But What's the Question?:The
Paradoxof Open Systems’Benchmarks,"CMG ‘94 ProceedingsQrlando, Florida,
vol. 2, p.732, December 1994.

[GTPC] N.J. Gunther, "Thinking Inside the Box and the Next Step in TPC
Benchmarking -- A Personal ViewT'PC Quarterly Report, January 1995.

[GSPEC] N.J. Gunther, "FlighRecordersTiming Chains,and Directionsfor SPEC
System BenchmarksSPEC Newsletter, vol. 7, #1, p.7, March 1995.

[PMWG] Someof the materialin sectionsl-3, of this paper, appearselsewheren
PMWG documents contributed by Ram Chelluri, and other PMWG members.

