Triangulating the Apdex Metric with Barry-3

Session 45A

CMG International Conference
San Diego, California
December 5, 2007

Dr. Neil J. Gunther
Performance Dynamics
Castro Valley, California
njgunther@perfdynamics.com

Mario Francois Jauvin
MFJ Associates
Ottawa, Canada
mario@mfjassociates.net
Motivation

Better Performance Through Better Visualization
How High is Mt. Everest?

- Highest mountain in the world
 - How do we know that?
 - It’s a single number (like A_1)
- Estimates have varied
 - It’s rising a few mm each year
 - But moves northward several cm
 - GPS is less accurate for heights
- Surveyors solved this problem a long time ago
All Done with Triangles

- **Surveying procedure**
 - Triangulation
 - Start with short distances
 - Form triangular mesh

- **Great Trigonometric Survey of India**
 - How big is my colony?
 - Started by the British c.1790
 - George Everest joined in 1822
 - First estimate of Everest c.1850 was 8849m
 - Officially: 8848.82m

- **Computer graphics**
 - Similar idea
 - Triangular mesh for defining irregular shapes
Some Facts About Triangles

- In following, consider only equilateral \triangle (each interior angle = 60°)
- For \triangle sides of length 2, height $h = \sqrt{3}$
 - For \triangle sides of length 1, height $h = \sqrt{3}/2$
 - For \triangle sides of length $2/\sqrt{3}$, height $h = 1$
- Bisector of each side also bisects opposite interior angle (30°)
The Centroid

- **Centroid** (P) or "center of gravity" is 1/3rd height of the \(\Delta \) \((h) \)
- By symmetry, centroid is at 1/3rd length of each bisector (b and c)
- We see: \(a + a + a = h \) and also know \(b = c = a \)
- Therefore: \(a + b + c = h \) (sum rule)
Barycentric Point

- Even if point P is moved away from centroid
 - Sum rule: \(a + b + c = h \) still holds
 - True for any point inside the \(\Delta \)
- Choose \(h = 1 \) as a convenient normalization
- Any 3 metrics that sum to 1 can mapped to this coordinate system

Slide 7
Apdex Categories

- **Categorical data**
 - Sampled RTT counts
 - Categorized by threshold time T
 - *Satisfied* \((0 < \text{Sat} < T)\)
 - *Tolerating* \((T < \text{Tol} < 4T)\)
 - *Frustrated* \((\text{Frus} > 4T)\)

- **Ratio of counts**
 - If total counts in any period is \(\text{Cnt}\), then \(\text{Sat} + \text{Tol} + \text{Frus} = \text{Cnt}\)
 - Equivalently: \((\text{Sat}/\text{Cnt}) + (\text{Tol}/\text{Cnt}) + (\text{Frus}/\text{Cnt}) = 1\)
 - **Think of each term as a percentage of \(\text{Cnt}\)**
 - Satisfied\% + Tolerating\% + Frustrated\% = 100\%
 - **More simply: \(s + t + c = 1\)**
 - Where: \(s = \text{Satisfied}\%, t = \text{Tolerating}\%, f = \text{Frustrated}\%\)

- **Barycentric coordinates**
 - \(s + t + c = 1\) means each triple \(\{s, t, c\}\) is a barycentric point
 - Only need a pair of \(\{s, t, c\}\) because of sum rule
Apdex Index

- **Apdex categories define Index**
 - \(A_T = s + t/2 \)

- **Application responsiveness**
 - \(A_T \) based on RTT counts e.g., Gomez
 - User-perceived performance (not system performance)

- **Single number \(A_T \) reported**
 - Aimed at Executive Mgrs.
 - Normalized range: \(0 < A_T < 1 \)
 - Colored zones for \(A_T \) values

- **Some Limitations**
 - How to compare 5 geographic \(A_T \) values for the *same* appln? (Table?)
 - How to compare 5 geographic \(A_T \) values for 5 apps? (messy)
 - Most enterprises need to compare 100’s of apps? (give up?)
 - Also want to know how multiple \(A_T \) values change in time
Solution

Mapping Apdex to Barry-3
Any 3 metrics that sum to 1 can mapped to Barry-3 system
- Apdex categories: $s + t + f = 1$ (height)
- Arrows $\{s,t,f\}$ range from each side (min=0) to opp. interior angle (max=1)

Limitation
- Don’t know the numerical value of A_T
Adding Numerical Apdex Zones

- \(A_T \) zones are diagonal bands
 - NOTE: Zone edges are parallel to Barry t-axis
- Zone boundaries are lines of constant \(A_T \) (isoclines)
- Zones are actually independent of Barry-3 coordinates
Combining A_T with Zones

- Can visually estimate the value A_T from the Zone boundaries
Example A_T Data in Barry-3

- Shown are 5 geographic measurements of the same application
 - Some points may cover each other
 - Most clustered near $s = 1$ apex in this sample
 - One straggler is near the centroid
- Data supplied by Peter Sevcik
Benefits of Barry-3

- Compact visualization
- Simultaneous metric display
 - Actual A_T index is a point inside triangle
 - Apdex categories $\{s,t,f\}$ determine its position
- Disambiguation
 - Same A_T index can have different values of $\{s,t,f\}$
 - Don’t pay attention if you don’t care
- Apdex zones become colored diagonal bands
- Multiple applications
 - Represent each app by different marks or colored points
 - More data without making Barry-3 triangle larger
- Animating Changes
 - Changes in performance appear as movement of points
 - Can represent historical record of A_T index (“flight recorder”)

Slide 15
Sir Barry conquers Mt. Everest in 1953

Questions?

Thank You