Triangulating the Apdex Metric with Barry-3

Session 45A

CMG International Conference San Diego, California

December 5, 2007

Dr. Neil J. Gunther Performance Dynamics Castro Valley, California njgunther@perfdynamics.com

Mario Francois Jauvin MFJ Associates Ottawa, Canada mario@mfjassociates.net

Measuring What Matters"

Motivation

Better Performance Through Better Visualization

How High is Mt. Everest?

All Done with Triangles

- Surveying procedure
 - Triangulation
 - Start with short distances
 - Form triangular mesh
- Great Trigonometric Survey of India
 - How big is my colony?
 - Started by the British c.1790
 - George Everest joined in 1822
 - First estimate of Everest c.1850 was 8849m
 - Officially: 8848.82m
- Computer graphics
 - Similar idea
 - Triangular mesh for defining irregular shapes

- In following, consider only equilateral Δ (each interior angle = 60°)
- For Δ sides of length 2, height h = $\sqrt{3}$
 - For \triangle sides of length 1, height h = $\sqrt{3/2}$
 - For Δ sides of length 2/ $\sqrt{3}$, height h = 1
- Bisector of each side also bisects opposite interior angle (30°)

The Centroid

- Centroid (P) or "center of gravity" is 1/3rd height of the Δ (h)
- By symmetry, centroid is at 1/3rd length of each bisector (b and c)
- We see: a + a + a = h and also know b = c = a
- Therefore: a + b + c = h (sum rule)

Barycentric Point

- Even if point P is moved away from centroid
 - Sum rule: a + b + c = h still holds
 - True for any point inside the Δ
- Choose h = 1 as a convenient normalization
- Any 3 metrics that sum to 1 can mapped to this coordinate system

Apdex Categories

- Categorical data
 - Sampled RTT counts
 - Categorized by threshold time T
 - Satisfied (0 < Sat < T)
 - Tolerating (T < Tol < 4T)
 - *Frustrated* (Frus > 4T)
- Ratio of counts
 - If total counts in any period is *Cnt*, then Sat + Tol + Frus = Cnt
 - Equivalently: (Sat/Cnt) + (Tol/Cnt) + (Frus/Cnt) = 1
 - Think of each term as a percentage of Cnt
 - Satisfied% + Tolerating% + Frustrated% = 100%
 - More simply: s + t + c = 1
 - Where: s = Satisfied%, t = Tolerating%, f = Frustrated%
- Barycentric coordinates
 - s + t + c = 1 means each triple {s, t, c} is a barycentric point
 - Only need a **pair** of {s,t,c} because of sum rule

Apdex Index

- Apdex categories define Index
 - A_τ = s + t/2
- Application responsiveness
 - A_T based on RTT counts e.g., Gomez
 - User-perceived performance (not system performance)
- Single number A_T reported
 - Aimed at Executive Mgrs.
 - Normalized range: 0 < A_T < 1
 - Colored zones for A_T values
- Some Limitations
 - How to compare 5 geographic A_T values for the same appln? (Table?)
 - How to compare 5 geographic A_T values for 5 apps? (messy)
 - Most enterprises need to compare 100's of apps? (give up?)
 - Also want to know how multiple A_T values change in time

Solution

Mapping Apdex to Barry-3

Locating A_T in Barry-3

- Any 3 metrics that sum to 1 can mapped to Barry-3 system
 - Apdex categories: s + t + f = 1 (height)
 - Arrows {s,t,f} range from each side (min=0) to opp. interior angle (max=1)
- Limitation
 - Don't know the numerical value of A_T

Adding Numerical Apdex Zones

- A_T zones are *diagonal* bands
 - NOTE: Zone edges are parallel to Barry t-axis
- Zone boundaries are lines of constant A_T (*isoclines*)
- Zones are actually independent of Barry-3 coordinates

Combining A_T with Zones

Can visually estimate the value A_T from the Zone boundaries

Example A_T Data in Barry-3

- Shown are 5 geographic measurements of the same application
 - Some points may cover each other
 - Most clustered near s = 1 apex in this sample
 - One straggler is near the centroid
- Data supplied by Peter Sevcik

Benefits of Barry-3

Compact visualization

Simultaneous metric display

- Actual A_T index is a point inside triangle
- Apdex categories {s,t,f} determine its position

Disambiguation

- Same A_T index can have different values of {s,t,f}
- Don't pay attention if you don't care
- Apdex zones become colored diagonal bands

Multiple applications

- Represent each app by different marks or colored points
- More data without making Barry-3 triangle larger

Animating Changes

- Changes in performance appear as movement of points
- Can represent historical record of A_T index ("flight recorder")

Thank You

