Triangulating the Apdex Metric with Barry-3

Session 45A

CMG International Conference
San Diego, California
December 5, 2007

Dr. Neil J. Gunther
Performance Dynamics Castro Valley, California
njgunther@perfdynamics.com
Mario Francois Jauvin

MFJ Associates
Ottawa, Canada
mario@mfjassociates.net

Motivation

Better Performance Through
Better Visualization

How High is Mt. Everest?

All Done with Triangles

- Surveying procedure
- Triangulation
- Start with short distances
- Form triangular mesh
- Great Trigonometric Survey of India
- How big is my colony?
- Started by the British c. 1790
- George Everest joined in 1822
- First estimate of Everest c. 1850 was 8849m
- Officially: 8848.82m
- Computer graphics
- Similar idea
- Triangular mesh for defining irregular shapes

Slide 4

Some Facts About Triangles

- In following, consider only equilateral Δ (each interior angle $=60^{\circ}$)
- For Δ sides of length 2 , height $h=\sqrt{ } 3$
- For Δ sides of length 1 , height $h=\sqrt{ } 3 / 2$
- For Δ sides of length $2 / \sqrt{ } 3$, height $h=1$
- Bisector of each side also bisects opposite interior angle (30 ${ }^{\circ}$)

The Centroid

- Centroid (P) or "center of gravity" is $1 / 3$ rd height of the $\Delta(h)$
- By symmetry, centroid is at 1/3rd length of each bisector (b and c)
- We see: $a+a+a=h$ and also know b=c=a
- Therefore: $\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathrm{h}$ (sum rule)

Barycentric Point

- Even if point P is moved away from centroid
" Sum rule: $\mathbf{a + b + c}=\mathrm{h}$ still holds
- True for any point inside the Δ
- Choose $h=1$ as a convenient normalization
- Any 3 metrics that sum to 1 can mapped to this coordinate system

Apdex Categories

- Categorical data
- Sampled RTT counts
- Categorized by threshold time T
- Satisfied (0<Sat < T)
- Tolerating ($\mathrm{T}<\mathrm{Tol}<4 \mathrm{~T}$)
- Frustrated (Frus > 4T)
- Ratio of counts
- If total counts in any period is Cnt, then Sat + Tol + Frus = Cnt
- Equivalently: (Sat/Cnt) + (Tol/Cnt) $+($ Frus/Cnt $)=1$
- Think of each term as a percentage of Cnt
- Satisfied\% + Tolerating\% + Frustrated\% = 100\%
- More simply: s+t+c=1
- Where: $s=$ Satisfied\%, $\mathrm{t}=$ Tolerating\%, $\mathrm{f}=$ Frustrated\%
- Barycentric coordinates
- $s+t+c=1$ means each triple $\{s, t, c\}$ is a barycentric point
- Only need a pair of $\{\mathrm{s}, \mathrm{t}, \mathrm{c}\}$ because of sum rule

Apdex Index

- Apdex categories define Index
- $A_{T}=\mathbf{s}+\mathbf{t} / \mathbf{2}$
- Application responsiveness
- A_{T} based on RTT counts e.g., Gomez
- User-perceived performance (not system performance)
- Single number A_{T} reported
- Aimed at Executive Mgrs.
- Normalized range: $0<A_{T}<1$
- Colored zones for A_{T} values
- Some Limitations
- How to compare 5 geographic A_{T} values for the same appln? (Table?)

- How to compare 5 geographic A_{T} values for 5 apps? (messy)
- Most enterprises need to compare 100's of apps? (give up?)
- Also want to know how multiple \mathbf{A}_{T} values change in time

Solution

Mapping Apdex to Barry-3

Locating A_{T} in Barry-3

Maximal Satisfaction

- Any 3 metrics that sum to 1 can mapped to Barry-3 system
- Apdex categories: $\mathbf{s + t}+\mathbf{f}=1$ (height)
- Arrows $\{\mathrm{s}, \mathrm{t}, \mathrm{f}\}$ range from each side $(\min =0)$ to opp. interior angle ($\max =1$)
- Limitation
- Don't know the numerical value of \mathbf{A}_{T}

Adding Numerical Apdex Zones

- A_{T} zones are diagonal bands

NOTE: Zone edges are parallel to Barry t-axis

- Zone boundaries are lines of constant A_{T} (isoclines)
- Zones are actually independent of Barry-3 coordinates

Combining A_{T} with Zones

- Can visually estimate the value A_{T} from the Zone boundaries

Example A_{T} Data in Barry-3

- Shown are 5 geographic measurements of the same application
- Some points may cover each other
- Most clustered near s=1 apex in this sample
- One straggler is near the centroid
- Data supplied by Peter Sevcik

Benefits of Barry-3

- Compact visualization
- Simultaneous metric display
- Actual A_{T} index is a point inside triangle
- Apdex categories $\{\mathrm{s}, \mathrm{t}, \mathrm{f}\}$ determine its position
- Disambiguation
- Same A_{T} index can have different values of $\{s, t, f\}$

- Don't pay attention if you don't care
- Apdex zones become colored diagonal bands
- Multiple applications
- Represent each app by different marks or colored points
- More data without making Barry-3 triangle larger
- Animating Changes
- Changes in performance appear as movement of points
" Can represent historical record of A_{T} index ("flight recorder")

Thank You

