
On the Application of Barycentric Coordinates

to the Prompt and Visually Efficient Display of

Multiprocessor Performance Data∗

N. J. Gunther

Systems Technology Laboratory, Pyramid Technology Corporation,
3860 North First Street, San Jose, California, 95134, U.S.A.

Abstract

Processor utilization is the leading indicator of computer system performance. Moni-
toring the utilization of large multiprocessor (MP) systems (with N = 10 to 30 processors)
rapidly becomes tiresome using conventional performance tools; particularly those where
the interface amounts to scrolling a torrent of ASCII data across a terminal screen. His-
tograms and similar visual presentations are also cumbersome in an MP setting since the
occupied screen real-estate grows with N . We introduce the notion of barycentric (center of
mass) coordinates and show how it can be applied as a performance monitor to the efficient,
dynamic, display of MP statistics. Screen occupancy is small and independent of N . The
greatest benefit appears to be the emergence of simple, visual “signatures” which corre-
late with the workload to a degree where the performance analyst’s peripheral attention is
mostly drawn to significant changes in performance. Although reading these signatures is
not intuitive, learning ss trivial once the semantics is explained. Some example barycentric
signatures are presented.

1 INTRODUCTION

The results presented in this paper arise out of exploring a rather remote tributary of main-
stream research in the area of visual pecfastmance tools or more colloquially, performance
visualization for computers (PVC)—the whole subject being deeper and broader than any
of us currently understands. This paper is concerned more with uncovering design princi-
ples (in so far as they can be identified) than introducing yet another PVC tool. To this
end, we will not rely on window-bed displays, graphical workstations, novel pointing devices
or any other of the paraphenalia [2] usually associated with PVC [3, 4].

Instead, we consider the design for a performance monitor with foundations firmly
rooted in geometry. Out of this geometrical design emerge certain visual properties which,
based on our experience, appear useful for PVC. At this stage in our understanding it is
only possible to speculate as to why this particular choice of geometry carries the attributes
of good design, but even speculative statements about PVC design represent an advance
over the informality of undirected experiment. With such design criteria in place, it then
becomes possible to propose enhancements for our performance monitor which draw on
more elaborate display technologies.

∗Reproduction of [1] by the author using an OCR scan made by M. Jauvin on April 7, 2007

1

2 TOOLS AND TECHNIQUES

2.1 Monitoring Tools

Performance monitors for commercial maintiame computer systems have generally tended
to be terminal-based with ASCII numerical output. An example is shown in Fig. 1. This
has been particularly true of standard UNIX systems [5].

Page 1 of 1untitled text 2

Printed: Friday, April 20, 2007 Apr 20, 2007 3:57:57 PM Printed For: Neil Gunther

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl!

 0 2 0 4191 7150 6955 1392 93 374 573 14 1433 78 22 0 0!

 1 2 0 179 11081 10956 1180 132 302 1092 13 1043 79 21 0 0!

 2 1 0 159 9524 9388 1085 141 261 1249 14 897 79 21 0 0!

 3 0 0 3710 10540 10466 621 231 116 1753 2 215 70 29 0 0!

 4 5 0 28 355 1 2485 284 456 447 30 2263 77 23 0 0!

 5 5 0 25 350 1 2541 280 534 445 26 2315 78 22 0 0!

 6 3 0 26 331 0 2501 267 545 450 28 2319 78 22 0 0!

 7 2 0 30 292 1 2390 232 534 475 23 2244 77 22 0 0!

 8 4 0 22 265 1 2188 220 499 429 26 2118 75 25 0 0!

 9 2 0 28 319 1 2348 258 513 440 26 2161 76 24 0 0!

 10 4 0 23 308 0 2384 259 514 430 22 2220 76 24 0 0!

 11 4 0 27 292 0 2366 237 518 438 30 2209 77 23 0 0!

 12 11 0 31 314 0 2446 253 530 458 27 2290 78 22 0 0!

 13 4 0 31 273 1 2334 223 523 428 25 2261 79 21 0 0!

 14 12 0 29 298 1 2405 247 521 435 25 2286 78 22 0 0!

 15 4 0 32 330 1 2445 272 526 450 24 2248 77 22 0 0!

 16 5 0 28 271 0 2311 219 528 406 29 2188 76 23 0 0!

 17 4 0 23 309 1 2387 253 537 442 25 2234 78 22 0 0!

 18 3 0 25 312 1 2412 257 534 449 26 2216 78 22 0 0!

 19 3 0 29 321 1 2479 262 545 462 31 2287 78 22 0 0!

 20 14 0 29 347 0 2474 289 541 457 24 2253 78 22 0 0!

 21 4 0 29 315 1 2406 259 534 469 24 2240 77 22 0 0!

 22 4 0 27 290 1 2406 243 531 480 25 2258 77 22 0 0!

 23 4 0 27 286 1 2344 235 531 445 26 2240 77 22 0 0!

 24 3 0 30 279 0 2292 228 518 442 22 2160 77 23 0 0!

 25 3 0 26 275 1 2340 227 538 448 25 2224 76 23 0 0!

 26 4 0 22 294 1 2349 247 529 479 26 2197 77 23 0 0!

 27 4 0 27 324 1 2459 270 544 476 25 2256 77 23 0 0!

 28 4 0 25 300 1 2426 249 549 461 27 2253 77 23 0 0!

 29 5 0 27 323 1 2463 269 541 447 23 2277 77 22 0 0!

 30 2 0 27 289 1 2386 239 535 463 26 2222 77 23 0 0!

 31 3 0 29 363 1 2528 304 525 446 26 2251 76 23 0 0!

Figure 1: One cycle of mpstat output for an N = 32 multiprocessor

Since the advent of bit mapped displays [6] and window-style user interfaces, however,
there has existed the opportunity for software emulation of various types of devices for ana-
lyzing real-time data [7]. These devices are also capable of representing aspects of computer
system state itself viz., performance indicators for such things as file fragmentation, pro-
cessor loading, and paging rates [8]. This capability has resided mostly in research software
environments and has only recently made its way into commercial software environments.

As the need has increased for better performance tuning of computer systems which
perform complex tasks such as, supercomputing [9], and transaction processing [10], so
has the need for merging performance tools with window systems. In its full embodiment,
this has become the subject of PVC. Typically, such tools provide a more visual display
of performance information. Common examples are: time-series plots, tachometer or dial
indicators, Gantt charts, contour plots, strip recorders, and histograms.

The logical extension of this approach is to inevitably open so many windows as to
consume significant portions of screen real-estate [7, 9, 11] and, worse yet, reach the point
where the performance analyst is potentially suffering from visual overload!

2

2.2 Postmortem Tools

Other visual performance tools which are not usually integrated into any particular operat-
ing system or software environment include: Kiviat graphs [12–14] and Chernoff faces [15].
Typically, these tools provide static, post-run, data presentation by displaying some ar-
bitrary number of performance parameters to produce equally arbitrary shape or pattern
definitions, e.g., “keelboars”, “arrows” and “smiles”. A more recent approach to the static
presentation of multidimensional performance data is the “multigraf”. This tool provides a
visualization of clustering within the context of multivariate statistical analysis (MANOVA)
of performance-related variables [16].

There is a common drawback for most of these tools, however. The semantics of the
patterns can differ dramatically across different systems or even on the same system under
different workloads. From our point of view, the benefit of these postmortem tools lies in
the way they enbrace pattern recognition, which in turn draws directly on the human brain’s
superior architecture for visual analysis. Compared with conventional tools, the patterns
formed by these alternative representations offer a better match between the states of the
digital computer being analyzed and the states of the cognitive computer of the analyst.
Unfortunately, dynamic pattern recognition seems to have been adopted slowly at best in
the context of PVC tools. The inertia is probably both technical and cultural; technical
in that performance data (as will be revealed in the subsequent discussion) is difficult
to represent as meaningful patterns; and cultural in that established data-presentation
techniques are not available in conventional software environments.

We also note in passing, that PVC gets much of its current impetus from the emerging
technology of “scientific visualization”. It is our opinion, however, that there is a fundamen-
tal difference between these two activities. Scientific visualization techniques rely heavily
on the implicit 3-dimensional structure of typical data, e.g., seismic waves. Computer
performane data, on the other band. usually belongs to an undefined, multi-dimensional
hyperspace [17]. Moreover, the subtleties associated with rendering single-processor per-
formance are further exacerbated in the case of MP architectures. In fact, monitoring
performance on an MP platform forces one to think anew about performance tools. In
this paper, we focus on monitoring MP performance in general and processor utilization in
particular.

2.3 Prompt Patterns

In the subsequent discussion, we will attempt to integrate pattern recognition with dynamic
monitoring of performance data. We will confine ourselves to UNIX systems althomgh, the
PVC tool we shall be describing cold be implemented in any operating system that allows
non-invasive sampling of the appropriate processor statistics.

Of the PVC tools reviewed so far, our approach has little in common with any of them
save perhaps for Kiviat graphs. The Kiviat graph is multidimensional and can be dy-
namic [9]. Visual cueing comes from the appearance of loosely defined symmetries and
arbitrary geometrical (polygonal) shapes. Unlike the arbitrariness of the Kiviat represen-
tation, however, our approach produces consistent dynamic, visual “signatures” due to the
choice of a highly constrained geometry for the multidimensional representation of processor
performance data.

3 BARYCENTRIC REPRESENTATION

3.1 Dimensional Compression

If two parameters, p1 and p2, represent two independent degrees of freedom, the appropriate
geometrical represention is a 2-dimensional coordinate yaem (x, y) such that the location
of a point in the (x, y)-plane is given by the values p1 and p2. If, however, the values of

3

Figure 2: Barycentric coordinates for the centroid and an arbitrary point

these parameters are restricted by the sum rule:

p1 + p2 = 1 (1)

then one degree of freedom is removed and the range of parameter values can be represented
on a 1-dimensional unit line segment.

Similarly, the locus of a point in three dimcasiotls, having only two degrees of freedom,
can be shown (Fig. 2) to be bounded by an equilateral triangle1. Hereafter, we assume
unit height for such a triangle. The location of any interior point is given by the distance
along the three limbs that are perpendicular to each side. These limbs form the barycentric
coordinates. Identifying the length of each limb with the parameters: p1, p2 and p3, the
centroid corresponds to: p1 = p2 = p3 = 1/3. For all interior points, the sum of these three
distances is equal to 1 such that:

p1 + p2 + p3 = 1 (2)

is the corresponding 3-parameter sum rule. The invariant sum follows trivially from the way
the three limbs partition the interior of the triangle in an area-invariant way. In general,
for n parameters:

nX
i

pi = 1 (3)

We now apply this conceptual framework to MP performance analysis.

3.2 Parametrizing Multiprocessor State

Computer processor state can be expressed as three parameters:

1. Idle-time (i): The percentage of time the processor spends either not executing any
code or waiting for something else to happen e.g., the completion of an 1/0 request.

2. User-time (u): The percentage of processor time spent executing application code.

1The marketing potential of the barycentric coordinate system invoking the image of a pyramid has not been
entirely lost on the author. He, however, regards it as both coincidental and inconsequential.

4

3. System-time (s): The percentage of processor time spent executing code in the UNIX
kernel (other than Idle).

These three parameters do obey a sum rule so, it becomes possible to represent the values
of these performance parameters in the barycentric coordinate system (IDL, USR, SYS in
Fig. 3). There is also an additional degree of freedom viz. real-time, which is not directly
associated with these geometrical considerations.

Our approach provides for a visual display of up to 12 processors2. They are currently
labeled: 0, 1, .., B in hexadecimal, so that each label only occupies one ASCII character on
the screen. In addition in these three performance parameters, the display is dynamic and
provides the capability of examining the temporal development of processor performance
(e.g., the way in which steady-state transaction processing is achieved [18]). Hereafter, we
refer to this as a 3 + 1-dimensional representation.

In other words, at least (3 + 1) × 12 = 48 performance parameters can be viewed
simultaneously in 2-dimensions and more significantly, instantly comprehended. In the next
section, we shall indicate how these dimensions can be compressed even further.

3.3 Coordinate Transformations

Referring to Fig. 3, and setting the constant ρ = 1/
√

3, we bave from elementary trigonom-
etry:

ux = ρu and sx = 2ρs (4)

These being respectively, the ordinate offset of the user-rime and the abscissa projection of
system-time. Now, it can be seen that any location (x, y) on the terminal sceen is given by:

Figure 3: Transformation of barycentric to screen coordinates

(ux + sx, u) . (5)

Consequently, any algorithm for computing a screen position in barycentric coordinates
only requies two of the three performance parameters: user-time, system-time, and idle-
time. The two values, together with the appropriate scaling factors (in character units) for

2The current generation of MIServer hardware supports 12 processors. The next generation will support up
to 24 processors (2 per CPU board) and will therefore require a modification to the current labelling scheme.
One possibility would be to drop the hexadecimal notation and label the “upper” processors (on the vertically
mounted board) alphabetically A–L and the “lower” processors with lower case letters, a–l.

5

the aspect ratio of the particular terminal, provide all the necessary detail. The choice of
barycentric coordinates in the previous section was motivated by the 3-parameter sum rule:

u + i + s = 100% (6)

Idle-time, however, can be decomposed further into the sum of percentage cpu-idle and
cpu-waiting for I/O to complete (See Fig. 1).

Figure 4: Tetrahedral barycentric coordinates for p = 4

As an example, the format which the DataCenter/OSx performance tool, mpstat uses
for reporting processor statistics is shown in Table 1. This performance data can be repar-

Table 1: Format of mpstat output
id% us% sy% io%
78 10 12 38

titioned as shown in Table 2. Therefore, processor utilization can actually be expressed as

Table 2: Repartitioned processor performance indices
cpu-idl% cpu-wio% usr% sys%

40 38 10 12

a 4-parameter sum rule. The question then arises, if a 3-parameter sum rule is represented
by an equilateral triangle, what is appropriate geometrical representation for a 4-parameter
sum rule?

One might be tempted. at first, to conclude that the appropziate choice is a square but,
from our earlier discussion of dimensional compression we can state that, in general, far
n performance parameters we require d spatial dimensions to uniquely represent the state
where d is given by.

d = n− 1 (7)

6

So, from purely geometrical considerations a 4-parameter barycentric representation (e.g.,
usr, sys, idl, wio) would require a 3-dimensional coordinate system viz., a tetrahedron
shown is Fig. 4. One can side-step the complexity of rendering such a 3-dimensional image
on the screen by resorting to the obvious trick of looking “down” the WIO axis and “color”
encoding it, but we will not pursue that topic here. In principle, a total of (4 + 1)× 12 = 60
performance parameters could be displayed on a 2-dimensional screen. Attempting to go
beyond this level of dimensional compression would us back to a state of visual overload,
which it has been our goal to avoid.

4 UNIX IMPLEMENTATION

We now discuss the UNIX implementation of these fundamental concepts in a PVC tool
affectionately christened barry3. The variant of UNIX used for the innplementaton is
System V Release 4 and the discussion is presented in the context of a standard terminal
screen4 or xterm window [19] as shown in Fig. 5.

Figure 5: The appearance of barry in an xterm window

The program barry has a lightweight structure of about 500 lines on non-invasive user
code that makes calls to kernel data structures. It has no more system-call overhead than
the existing mpstat tool. Like the Berkeley tool systat it uses the curses package for
updating the terminal display. The default update rate is once per second which is the
finest time resolution permitted by the kernel code that collects processor statistics.

The entire package was designed and implemented in a matter of weeks by the author.
It has been used for the analysis of several important benchmarks. In particular, it was
employed for database and system tuning in the course of achieving a record-setting UNIX
TPC-B transaction processing benchmark results [18, 20, 21]. The “desktop” appearance
of barry running in a multiple xterm window environment is shown in Fig. 6. It should
be noted that the window-based display is depicted here merely because it provides a
convenient medium in which to capture the bitmap image of Fig. 6.

3The spelling was chosen primarily for friendliness and only secondarily for its mnemonic value.
4To be useful to Pyramid Sales Engineers in the field, where window-based displays are not yet commonplace,

the author made the conscious design decision to first explore a simple terminal-based implementation.

7

5 DYNAMIC CLUSTERING

In Fig. 5 we see that only 11 processors are displayed (processor 2 is missing) but the
MP system is known to have 12 processors instaleld. This effect arises as a consequence
of the limited character positions on the terminal display resulting in occassional overlap
of some processor points. We also see some clustering of processors executing multi-user
applications. The interpretation is that pracessors 5 and B are better than 75% utilized
with some system time and very little idle time. The remaining processors are mostly
executing kernell code with a high percentage of idle time (presumably due to WIO).

Figure 6: Desktop appearance of barry in the upper left corner of the screen

Empirically, one can detect the following important clustering properties:

1. Locadon of the cluster in the triangle

2. Intra-cluster distance or point dispersion

3. Inter-cluster distance and the presence of outliers

4. Distinct patterns or signatures

Each of these properties can be comprehended in a visually efficient way in this barycentric
data representation.

Certain aggregations or clusters are often approximately repeated (as with hand-written
signatures) and therefore take on the significance of symbols in their own right. Transaction

8

processing systems, for example, will often cycle through identifiable clusters according to
whether the database management system is accessing data or performing a checkpoint.
In that case, the analyst may tend to concentrate more on the periodicity of these cycling
clusters as the important diagnostic.

6 CONCLUSION

PVC is a gray area in which colorful statements adhere all too easily. Certain qualitative
features of barry, however, stand out enough to warrant some speculative remarks. In
some respects the efficient visual semantics of barry seem akin to those of clock-hands. A
standard clock-face is easier to read than one with discrete (“digital”) numbers because the
relative position of the hands forms an image that is, by virtue of edge-detection probably
being an hereditary strength of the human visual system, more convenient for our visual
system to process (compute?).

In particular, the visual efficiency attributable to barry may be due to the point-like
patterns and their compact motion coupling strongly to the visual pre-processing that is
known to be performed within the human retina [22]. This conclusion is supported by the
observation that most of the time only a cursory awareness of the patterns in barry is neces-
sary. Therefore, the performance analyst’s attention is drawn only to those visual signatures
that appear discrepant with expectations. This is to be contrasted with most conventional
tools which require constant attention, laborious deciphering and interpretation, i.e., huge
amounts of cognitive processing.

Interestingly, experience with barry suggests that this visual semantics is quite robust
to distortions of the equilateral triangle due to incommensurate aspect ratios in terminals.
Such distortions, of course, are only acceptable when one is not concerned with quantifying
the location of the processor points.

6.1 Design Attributes

At this point it is worth reviewing the degree to which we have met our stated goal of
uncovering “good” design principles for PVC tools. Table 3 compares a number of desirable
design attributes across the selection of performance tools discussed in this paper.

A bullet indicates the tool possesses that attribute. A question mark (?) indicates un-
certainty or ambiguity about the presence of that attribute. Included as desirable attributes
are: the display of the performance tool should be localized on the screen as discussed in
Sect. 2.1; dynamic display to view temporal development Sect. 2.2; universally understood
semantics of the data representation; the ability to apply a data representation to arbitrary
performance parameters; capability to record and redisplay performance data collected over
a defined measurement period.

On this basis barry exhibits the major weakness that it is not generally applicable to a
wide variety of performance data. This is a reflection of the choice of geometrical constraint
expressed in the sum rule. Moreover, we see that the Kiviat graph comes in second as a tool
which qualifies in terms of these particular attributes. This is consistent with our earlier
qualitative expectations discussed in Sect. 2.3.

6.2 Future Work

Finally, we remark on short-comings observed while using barry and suggest ways in which
these might be addressed in future work.

Barycentric location of individual processors often overlap: This effect can lead to
ambiguous signatures. As example, consider the case where one processor is iocated
at the USR apex and another at the IDL vertex. If there are more than two pro-
cessors in the system then it remains unknown how the other processors are being

9

Table 3: Comparison of performance monitor design attribute
Attribute barry multigraf mpstat xload xtacho kiviat chernoff
Localized , - , , , , ,
Dynamic , , , , , , ?
Multi-p , - , - - , ,
MP , , , - - - -
Clustering , , - - - , -
Patterns , - - - - , -
Cognition , - - , , - -
Semantics , - - , , , -
Generality , , - - - - -
Journaling , - , - - ? ?

instantaneously utilized. Fortunately, such a signature is unlikely to be very persis-
tent and the immediate context may be enough to disambiguate events. Additionally,
bit-mapped displays and windows offer a way to offset overlapping data by using their
finer resolution.

Visual tracking of a particular processor is difficult: Generally, it is very difficult
to visualy track a particular processor due to both overlap effects and the abrupt
displacement of data points. The latter can be severe at one second sampling rates
or when sampling is pre-empted by a higher priority process for some period. The
solution here is to implement time-averaged motion as an option.

Barycentric coordinates are often distorted: Due to incommensurate aspect ratios,
the appearance of the equilateral triangle is distorted on standard terminal screens.
The aspect distortion on xterms is even worse (Fig. 5) . This effect would also be dele-
terious under the time-averaging option. As mentioned earlier, if accurate statistics
are required then, a non-distorting display device must be used.

Barycentric axes are only implicit: Because the barycentric axes are only implicit. It
is difficult to accurately assess percentage times for points that lie away from the ver-
tices. a moment’s reflection reveals the diagonal axes showing the centroid (allowing
SYS and IDL measurement) cannot be drawn in terminal mode with an ASCII char-
acter set. Drawing and refreshing the diagonals is clearly a motivating consideration
for an X-window tool.

Performance indices must conform to a sum rule: This is a conceptual limitation
and from the early discussion, there is probably a practical limit of supporting about
4 indices or 60 parameters. Such a limitation also means that it is not clear hour to
use this approach for monitoring other aspects of computer system performance, e.g.,
I/O and communication subsystems. This is both a strength and a weakness.

Important processor statistics are not displayed: Currently, there is no indication
of other important processor statistics e.g., context switch rates. One possibility
would be to show a single number representing the context-switch rate averaged over
all processors. This number could be displayed as a user-selecable option near the
triangle.

We have introduced the notion of barycentric (center of mass) coordinates and shown
how it can be as a performance monitor for the efficient, dynamic, diplay of MP ultilization
statistics. The greatest benefit appears to be the presence of simple visual “signatures”
which correlate with the workload to a degree where the performance analyst’s peripheral
attention is mostly drawn to significant changes in performance. Although reading these
signatures is not intuitive, learning is minimal.

10

7 ACKNOWLEDGEMENTS

The author to thank the many engineers at Pyramid who “road tested” barry and provided
the feedback which improved the content of this paper.

References

[1] N. J. Gunther. “On the application of barycentric coordinates to the prompt and vi-
sually efficient display of multiprocessor performance data”. In R. Pooley and J. Hill-
ston, editors, Proceedings of Sixth International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, volume Edinburgh, Scotland, pages
67–80. Antony Rowe Ltd., Wiltshire, U.K., September 1992.

[2] K. M. Nichols. “Performance Tools”. IEEE Software, pages 21–30, May 1990.
[3] A. D. Malony. “Performance Observability. Technical Report UIUCDCS-R-90-1630,

Univ. Illinois, Urbana-Champagne, IL, 1990.
[4] N. J. Gunther. “The CASE for future network systems’ performance”. Invited paper.

Systems Design and Network Conference, Santa Clara, California, May 1990.
[5] M. Loukides. System Performance Tuning. O’Reilly & Assoc. Inc., Sebastopol, Cali-

fornia, 1992.
[6] C. P. Thacker. “Alto: A personal computer”. Technical Report CSL-79-11, Xerox

PARC, Palo Alto, CA, August 1979.
[7] N. J. Gunther. “A distributed workstation approach to IC process characterization”.

In Proceedings of WORKSTATIONS’85 Conference, page 188, San Jose, California,
Nov 1985.

[8] W. Teiteleman. “The cedar programming environment: A midterm report and exam-
ination”. Technical Report CSL-83-11, Xerox PARC, Palo Alto, CA, Juune 1984.

[9] A. D. Malony. “An integrated performance data collection, analysis and visualiza-
tion system. In Proc. Fourth Conference on Hypercube Concurrent Computers and
Applications, March 1988.

[10] J. Gray, editor. The Benchmark Handbook for Database and Transaction Processing
Systems. Morgan Kaufmann, San Mateo, CA, 1991.

[11] R. D. Trammell. “The big picture: Visualizing system behavior in real time”. In Proc.
USENIX Summer Conference, pages 257–266, June 1990.

[12] R. Jain. The Art of Computer Systems Performance Analysis. Wiley, New York, 1990.
[13] K. Kolence and P. Kiviat. “Software unit profiles and kiviat figures”. Performance

Evaluation Review, 2(3):2–12, September 1973.
[14] D. Ferrari, editor. Computer System Performance Evaluation. Prentice-Hall, 1978.
[15] H. Chernoff. “The use of faces to represent points in k-dimensional space”. J. Amer.

Stat. Assoc., 68:361–368, June 1973.
[16] N. Hirsh and B. L. Brown. “A holistic method for visualizing computer performance

measurements”. In G. Nelson and G. Shriver, editors, Visualization in Scientific Com-
puting. IEEE Press, 1990.

[17] N. J. Gunther. “PARCbench: A benchmark methodology for multiprocessors”. In
Proc. ACM SIGMETRICS Conference, Santa Fe, New Mexico, May 24–27 1988.

[18] TPC Benchmark B. “Full disclosure report for the MIServer MIS 12S/12 using UNIFY
2000 release 2”. Technical report, Pyramid Technology, San Jose, CA, January 1992.

[19] V. Quercia and T. O’Reilly. X Window System Users’ Guide, Vol.3. O’Reilly & Assoc.,
1991.

[20] O. Serlin. “FT systems”. A monthly newsletter published by ITOM International,
1992.

[21] A. D. Malony and D. A. Reed. “Visualizing parallel computer system performance”.
Technical Report UIUCDCS-R-88-1465, Univ. Illinois, Urbana-Champagne, IL, 1988.

[22] H. Moravec. Mind Children. Harvard Univ. Press, 1988.

11

