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The Feynman path integral is presented for analyzing computer performance models which exhibit critical behavior due to
the presence of unstable states. We examine previously ignored deterministic “jump” solutions associated with instability
transients. Using these solutions, an explicit expression for the lifetime of an induced metastable state 1s derived for a

queueing model of virtual memory.
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1. Introduction

The role of instabilities in the performance
degradation of a broad range of computer systems
has been recognized for a long time [3,4,15,21] but
has proven difficult to express in a mathematically
tractable way [11,18,19,21,26]. A chief cause of
such difficulties 1s accomodating the global change
in system behavior which arises as a consequence
of local state fluctuations. Under heavy demand,
the system may become unstable to local fluctua-
tions such that the performance collapses sponta-
neously. In multiprogrammed computers with vir-
tual memory this dramatic degradation in perfor-
mance 1s known affectionately as “thrashing” [4]
and manifests itself as a sudden escalation in the
average response time of the system.

In the Courtois model of virtual memory [2,3],
the finite size of main memory is reflected in a
finite-population multiprogram queue. Additional
programs or jobs are kept outside the multipro-
gram queue in a stable arrival state. If, however,
the programming load becomes inordinately large,
the system can become unstable to small fluctua-
tions and may spontaneously “jump” 1nto a new
stable regime (the thrashing state). The transition

between these two regimes corresponds to large
transients and 1s essentially intractable using con-
ventional performance methods.

Similar transition effects are familiar in another
discipline: statistical physics. We revisit the bista-
ble Courtois model and examine it using a
mathematical formalism borrowed from statistical
physics; the imaginary-time (¢t - —it) Feynman
path integral [8] or statistical density matrix [7].
Since the path integral has proven successful in
understanding physical systems which exhibit un-
stable states [20] 1t 1s therefore natural to ask
whether this method might find similar applica-
tion in the context of performance models which
entail unstable queueing states. The purpose of
this note 1s to outline how such a program can be
carried out. Although we concentrate on just one
example as an application of the path integral
method, the fact that similar drift functions have
been shown to belong to other computer systems,
e.g., buffer flow-controlled networks [19,26],
multi-access networks [19,24], 1s suggestive that
the path integral method should be generally ap-
plicable to these and other computer performance
models [13].

The technique described in the following sec-
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tions corresponds to a small-variance continuum
approximation and in that sense represents another
asymptotic method [17] related to WKB [10]
matching for queues [16] and the large deviations
[5,25] extension of the Laplace method [5,9,20].
Each of these methods requires a large parameter,
N — co. In the method of large deviations [11,26]
the probability of rare transients occurring after
some long time-interval 7 is distributed asymptot-
ically as exp(— W) with transition frequency, W
=~ A exp(—nB). As we shall demonstrate using the
path integral, determination of the constants A
and B 1s associated with the lifetime of metastable
states through the choice of system control param-
eters.

2. Path integral formalism

We seek to express the dynamics of arbitrary
state transitions with mathematical consistency
from the outset. To this end we introduce the
definition of the path integral [7,8,20,21], and some
relevant identities. Our interest is in the transient
behavior of queueing systems, i.e., the system in a
state x at time ¢ undergoing a transition to a new
state x' at time ¢’. There is an infinite number of
intermediate states through which the final state
can be reached. Consequently, the transition can
be thought of as a set of possible trajectories in
state-space subject to some function which in-
fluences them according to system characteristics:
the “potential” function. Each trajectory or path
has a certain probability weighting. We express
this more formally by introducing the statistical
density matrix [7] denoted here p(x’, t'|x, ¢). If
Q 1s a self-adjoint time-development operator for
a real-valued state space such that the stationary
states u,(x) are determined by the eigenvalue
equation

Qun = Cnun? (1)

then the density matrix can be defined in spectral
form [7,8,25] as

p(x’, '|x, ) = 2 u,(x")u,(x) exp—Cr  (2)
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with 7= (¢"—t). The integral [p(x|x)dx=Trp
1s the partition function from which appropriate
statistical physics [8] or queueing theory [18] quan-
tities can be derived. In accord with the Feyn-
man—Kac theorem [20,22,25], the dominant con-
tributions to the density matrix come from the
lowest eigenvalue in the limit as 7 — oo.

An alternative definition of the density matrix
can be given using a cost functional I[x], defined
in terms of a deterministic (rotated-time)
Lagrangian function, L(x, x)= —(3x?+ V(x)),
where V(x) is some potential function for a
point-particle and x denotes differentiation with
respect to continuous time ¢. The time-develop-
ment operator J(x, p)1s related to the Lagrangian
function via a Legendre transform, Q =px — L
where p = dL /dx. The objective or cost functional
(also called the action [7,8] or (convergence) rate-
function [25]) is '

I[x] =fTL(x, %) dr. (3)

The density matrix can also be defined in terms
of the path integral

o(x', t'1x, ) =Afdlx] exp(~1[x]} (4

over all continuous state transitions or paths be-
tween (x, ) and (x’, ¢"). Here [d[x] denotes
functional integration over paths x(¢) obeying the
boundary conditions x(0) = x and x(7)=x" and
A" 1s an appropriate normalization constant for
the measure. The value of I[x(¢)] for some path
x(t) represents the “cost” for that trajectory. Paths
corresponding to large excursions between the ini-
tial and final states incur a higher cost, and thus
have a lower probability than paths which remain
close to the deterministic trajectory: the path of
least cost. Equation (4) is an alternative expression

of the probability-theoretic Feynman-Kac for-
mula

o(x’, t'|x, t)

= Ex{exp[—fV(x(r)) dt] -8(x(t") - x")},
(5)

where E {...} is the expectation with respect to
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the Wiener process x(¢) for Brownian motion on
R“ The reader is referred to the literature
[7,8,9,20,22] for further details regarding variants
of the path integral formalism. The key feature,
for our discussion, is the way in which the path
integral connects deterministic time-development
with stochastic time-development via the func-
tional integral over paths.

In this version of the Feynman path integral
(4), all quantities are naively real-valued. In gen-
eral, a real-valued cost functional with bounded
potential V(x) implies stable solutions. We re-
mind the reader that if an imaginary part should
develop 1n the cost functional it would signal the
presence of an unstable state since a complex
eigenfunction cannot be a true eigenfunction of
the self-adjoint operator Q.

3. Continuum stochastic equations

With the path integral defined, we now use it to
derive the general solution for time-dependent
state transitions in queueing systems. Consider a
one-dimensional system described by a continu-
ous-time, continuous-state Markov process with
random scalar state variable x(¢) € [0, N]. In the
continuum limit, Markov states evolve approxi-
mately as a conditional probability distribution
function P(x’,t" |x, t), which satisfies the forward
Kolmogorov continuity equation [1]

3,P=0(x)P=133e*(x)P| -3 [f(x)P].
(6)

Here d, denotes partial differentiation with re-
spect to x. The probability satisfies the initial
condition P(x, t=1t"|x", t)=8(x—x") and the
Neumann boundary condition, 19 _[o%(x)P]—
f(x)P=0 at x =0 and N. The infinitesimal drift
field f(x)= —0o_V(x) is defined in terms of the
external potential V(x) (Fig. 1). A stochastic pro-
cess 1s then characterized by the drnift function
f(x). The stability points of V(x) correspond to
the roots of f(x).

For the purposes of the large transient analysis
to be given in the next section, 1t will prove
beneficial to convert (6) to self-adjoint form. This
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Fig. 1. Schematic representation of queueing rates, drift and
potential for the Courtois model.

1s conveniently accomplished by transforming to
new variables; dz = dx/o(x) and Y(z) =
o(x)P(x) so that (6) becomes

Q¥ =3d2¥—d,[F(z)¥], (7)

which is equivalent to a diffusion equation with

unit diffusion coefficient and a transformed drift-
field

F(z)=|f(z) - 13,0%(2)] fo(2). (8)

A standard technique (see, e.g., [22]) enables the
first-order drift term in (7) to be replaced by an
effective potential via a gauge transformation Q*
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= U QU and p = UY¥ where U(z) = exp[— [F(z)
dz]. Then (7) becomes

Q% p = %dip—' Veff(Z)P (9)

with the effective potential V. (z) = 3[F*(z)+
d,F(z)]. The Markov process described by the
state variable z(7) is equivalent to the dynamics of
a single particle in a one-dimensional potential,
V. (z). This representation with drift-field and
state-dependent variance contributions 1s to be
contrasted with the simpler zero-variance or pure-
drift approximation that underlies the methods
described in [11,26].

Reverting to previous notation, the path in-
tegral defined in (1) is a solution of the trans-
formed Kolmogorov equation with objective func-
tion

1x(0)] = [{3(x/0(x))" + Ve (x)} dz. (10)

The form of the Lagrangian in (10) is i1dentical to
that described in Section 2 (cf. action functionals
in [9,25]). The first term represents the “kinetic
energy”’ of a single Brownian-like particle subject
to the potential V; in (9) with F(x) defined by
(8). In the absence of an effective potential the
path integral solution simplifies to a Gaussian

functional with stationary mean, corresponding to
the Wiener process [6,14,25].

4. Virtual memory model

We now turn to a path integral analysis of large
transients in the M /M /1 /N model of multipro-
grammed computers due to Courtois [2]. This
closed system comprises N terminals (or pro-
erams) connected to a computer subsystem. No
terminal can issue more than one request at a time
to the computer so that the interarrival time of
these requests is exponentially distributed with
mean 1 /A sec. The transient behavior of this mul-
tisource system is revealed by modeling it as a
finite population, single-server queue [14]. If the
subsystem has x € [0, N] requests enqueued, with
(N — x) requests remaining in an arrival state,
then the effective arrival into the subsystem 1s a

10
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linear state-dependent function A(x) = (N — x)A,
and the throughput is modelled as a nonlinear
function p(x) which subsumes page-faulting and
process suspension effects. These rates are de-
picted schematically in Fig. 1 and we note, 1n
passing, the similarity with rates for certain bista-
ble networks [13,19,24]. Further details about the
assumptions underlying the Courtois model of
virtual memory can be found 1n [3,21].

Although queue occupancy is formally a dis-
crete-valued state variable, because of our interest
in the limit as N — oo, it 1s consistent with our
earlier discussion to represent the queue-state dis-
tribution by a continuous real-valued vanable x(¢).
Accordingly, we approximate the Markov queue-
ing model by the continuum Kolmogorov equa-
tion (6) with infinitesimal drift function defined

by

f(x)=A(x)—p(x), (11)
and infinitesimal variance

o’(x)=A(x)+p(x). (12)

In Section 3 we noted that system stability 1s
primarily determined by the roots of (11). Noting
the similarities with WKB [10] to uncover the
asymptotics of (4) we can safely assume, in the
large-N limit, that both (11) and (12) have weak
state-dependence. The variance (12) mainly effects
time scales [13] and since we seek only asymptotic
estimates of the mean transition rate or first-pas-
sage time (FPT) to the new stable point, we fur-
ther assume that o“(x) is essentially constant and
denote it by p (the asymptotic service rate). Re-
cognizing that constant variance or coefficient of
diffusion depends inversely on the characteristic
system size N, 1/u plays the role of an intrinsic
large parameter. Alternatively, one could retain
(12) and simply impose an artificial parameter to
develop a perturbation expansion about the de-
terministic drift-dynamics (see, e.g., [9]). Our
small-variance approximation has the added be-
nefit of simplifying the equations without severe
loss of generality.

The infinitesimal drift function in Fig. 1 can be
most simply approximated by a third-degree poly-
nomial possessing, at most, three real positive
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roots corresponding to local equilibrium of the
service and arrival rates. Upon integrating (11)
with respect to x, a general polynomial expression
for the drift-potential of the Courtois model 1s

V(x)=3ix*+iB°x* + ax, (13)

where B° <0 implies that the system is in the
critical regime exhibiting bistability due to the
presence of two local minima in the potential
function, and a = 0 means that the bistable states
are degenerate. Only two control parameters are
required for a complete description of system sta-
bility in agreement with potentials belonging to
the class of “cusp” catastrophes [19]. In this
potential model, the arbitrary parameter B is iden-
tified with the maximal programming level [2,3] or
the potential-barrier height while the arbitrary
parameter a can be identified with either the
terminal-load N or the terminal “think time” 1 /A.
As a consequence of the small-variance approxi-
mation, the potential defined by (8) and (10) now
reduces to

Vo (x) = | f2(x) +p 3, f(x)]| /2p. (14)

Since the choice of 8, relative to u 1n (14), appears
arbitrary, V . (x) could be expanded as a sixth-de-
gree polynomial having up to three mimima. It can
be shown [13], however, that when V(x) 1s ex-
pressed in terms of actual model parameters, only
two mimima are significant. Provided there are at
least two local minima, the exact form of the
potential is unimportant for our qualitative discus-
sion of metastability. Performing a first variation
8I[x]/6x =0, it can be shown that the objective
functional has stationary solutions at the values of
the local minima, and at the instantaneous ““jump”
or “instanton” [23] solution given by

F= _/-x(sz-.,ff()’))_1/2 dy. (15)

As depicted 1n Fig. 2, the width of this step-like
transient corresponds to a ‘“hopping time” be-
tween wells while the separation between jumps
corresponds to the overall transition rate. The
value of the cost functional 7, at the jump 1s
proportional to the barrier height in agreement

with the more familiar WKB result [10,20]. The
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Fig. 2. A jump-anti-jump pair.

jump 1s the deterministic path of least cost that

interpolates between the minima— the escape path
by which the probability leaks into the global
minimum. Here we see the advantage of working
in the continuum approximation; it reveals the
nature of the large scale fluctuations which are
present at the onset of the transition between the
bistable states. All that remains 1s to show how
this “jump” solution can be applied to calculate

the time before the system leaves the metastable
state (1.e., FPT).

5. Lifetime of the metastable state

Permitting the control parameter a to take a
small negative value in the potential function (9)
lifts the degeneracy between the optimal queue
congestion x_ and the degraded queue congestion
x, as shown in Fig. 1. The previously optimal
performance regime now becomes metastable (with
respect to the lower minimum) and has a char-
acteristic life expectancy before the system under-
goes a complete transition into the degraded re-
gime (new global minimum).

Stationary solutions of the density matrix
dominate in the limit 7 — co. If the variance cor-
rections are identified with an expansion (up to
second order) about the dominant jump solution
Xo(1), we may express an arbitrary path as x(¢) =
xo(t) +2,a,x,. The x, are a complete set of real
functions. vanishing at the boundaries such that
x (t)=x,0)=0, ["dtx,(t)x,(t)=29,,, They
are also eigensolutions of the second variation of
I[x] and we write

Mx,=(8°I[x])/6x*)x,=0,x,, (16)

where M 1s the small variance operator having

11
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eigenvalues 6 . Taking the small-p limit we find
that the path integral (4) becomes a product of
ordinary Gauss—Fresnel integrals [8,20],

 exp(=10x01/w)TT{ [ (exp - 0, Ma,) da, |

X [1+0(p)] (17)

which can be re-expressed more simply as

A" exp(—Io/p)(det M)~ (18)

where the O(u) notation i1s now suppressed. More
generally, there can be a succession of
jump—anti-jump pairs (Fig. 2) that are well sep-
arated 1n time, and transitions can occur at any
instant on the z-axis. These combinatoric consider-
ations require that the correct contribution to the
lowest cost C, is given by the grand partition
function over j odd jump times

exp — C,T

_ J
= Y. exp(—jFy/p){ Kr(det M)} /5!
J (odd)

-1/2

Eexp{—K"r(det M) eXP("‘“Fo/P)}a (19)

where the newly introduced constant K is chosen
to provide normalization in agreement with A",

The lowest eigenvalue of M is negative, §, <0,
due to the absence of any turning point on the
interval [x_, x,]. It corresponds to an unstable
expansion leading to an infinite separation be-
tween the jump and the next anti-jump. This
negative eigenvalue gives rise to an imaginary
prefactor in the exponent of (19). Recalling our
remarks in Section 2, it is the signature of an
unstable state. Finally then, we have an expression
for the transition rate due to the separation be-
tween the jump and anti-jump pairs:

K(l:[ﬁn)_lﬂ exp{-—f[ﬂ{aff(a, B, Jc)]l/2 dx/p.}

(20).

It has the same form as the mean transition
frequency or mean FPT estimate [7,21] mentioned
in Section 1 with the constants now determined by
the value of the control parameters «, 8 in the

12
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effective potential. The inverse of (20) char-
acterizes the average lifetime of the metastable
state x_ 1n Fig. 1. Since this rate is exponentially
small in p, 1t cannot be seen in a perturbative
expansion of the original cost functional. In this
way the path integral describes how the transient
probability density escapes the metastable equi-
librium state (essentially via a unique deterministic
path) into the global equilibrium state accompa-
nied by a sudden shift in probability mass of the
equilibrium distribution.

6. Summary

Analogy with statistical physics has guided our
application of the path integral and the path in-
tegral has guided our small-variance analysis of
large transients that i1s otherwise unreachable by
conventional steady-state performance methods.
The analogy also provides another perspective on
the complexity of solving such bistable computer
systems. It 1s as difficult as one of the most subtle
problems in physics; calculating the transmission
probability for a ‘““quantum particle” to tunnel
through a potential barrier [12].

We have used a polynomial “mechanical poten-
tial” approximation in this paper because it is
natural to the Lagrangian in the Feynman formu-
lation of path integrals [7,8] and it also makes
contact with aspects of the catastrophe theory
approach discussed in [19]. The path integral
method presented here also has formal connec-
tions with the generalized method of large devia-
tions [9,23,25]. Defining Lagrangians directly in
terms of (nonpolynomial) probability-theoretic
distributions [11,13,26] avoids arbitrary coeffi-
cients like those introduced in Section 4.

Calculational methods, not reliant on the
small-variance approximation, are known for the
path integral [20] and should be developed for
performance analysis. Numerical analysis based
on the path integral has been investigated in [13].
The path integral formalism 1s extensible to
higher-dimensional topologies having greater in-
ternal degrees of freedom and Bickerstaff has con-
sidered an application for a network of processors
using process migration as a load-balancing mech-
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anism: a 2-dimensional Courtois network. These
and other ideas will be pursued in greater detail
elsewhere.
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