
The Instrumentation Challenge for Linux
Servers in the 21st Century

Neil J. Gunther

Abstract

There is a significant opportunity for Linux to
set the pace in the scalable server marketplace.
A key ingredient for scalability is manageability.
To achieve a high level of performance manage-
ment, better operating system instrumentation is
needed. The question is, can Linux developers
rise to that challenge?

1 A Brief History of Operat-
ing System Instrumentation

Since this article presents a vision of what the
Linux operating system could look like in the fu-
ture, it combines several aspects of performance
instrumentation which might otherwise appear
disjoint to the casual observer of Linux devel-
opment. To help us see the future, we begin by
briefly reviewing what has been done in the past.

The term instrumentation, as it will be used
throughout this article, refers to the implemen-
tation of certain counters in kernel memory that
are used to store sampled performance metrics,
e.g., I/O counts, memory page swaps, processor
busy periods and so on. These counts can also be
converted to rates according to a specified time-
base. More about this in Section 2.

The concept of instrumenting the operating
system (O/S) in this way is not only not new
to Linux, but even older than UNIX viz., the
Multics project at M.I.T. circa 1965. In fact,
one of the earliest forms of O/S instrumentation
was logically equivalent to the oft-seen but lit-
tle understood metric called the load average.
The load average is a moving-average measure
of the number of entries in the scheduler’s run
queue [1]. The purpose of having O/S instru-
mentation was to provide the Multics kernel de-
velopers with information about any significant
changes in performance caused by altering the

kernel code; especially that of the scheduler.

Since people like Dennis Ritchie worked on
Multics, it was only natural that this same ap-
proach would be adopted in the development of
the UNIX time-share kernel. Since then, as dif-
ferent modules have been developed to extend
the capabilities of UNIX, more instrumentation
counters have been included along with more ad
hoc tools to report those metrics. The develop-
ment of Linux instrumentation closely parallels
that of UNIX.

The historical details notwithstanding, the im-
portant point for our discussion is that none
of this instrumentation was implemented for
the purposes of providing performance analy-
sis and capacity planning information to man-
age transaction throughput and application re-
sponse times. Even twenty years ago, no one
could possibly have foreseen how ubiquitous
both UNIX and Linux would become for sup-
porting the Internet and Web-based applications.
Therefore, no one could have had any inkling
about a broader set of instrumentation require-
ments, but that is precisely the level of instru-
mentation that is needed today.

And let’s not be chauvinistic about Linux and
UNIX. Before either of those operating sys-
tems came into existence, there was the main-
frame. Yes, the mainframe. Contrary to popu-
lar opinion, the mainframe is not a “dinosaur”
that is almost extinct due to competition from
cheap microprocessors. The mainframe not only
survived that onslaught (by becoming cheaper
itself) but it also possesses some of the most
progressive O/S instrumentation and manage-
ment capabilities available on the market today.
In particular, the IBM System Z operating sys-
tem [7], formerly known as z/OS (and MVS be-
fore that) provides a uniform representation of
performance and capacity planning data via its
Resource Measurement Facility (RMF) and Sys-
tem Management Facility (SMF). We certainly

1

do not have that in UNIX or Linux. No, the wiser
view of the mainframe is to see it as a potential
role model, which we shall do subsequently.

Until relatively recently, one could only mon-
itor the sampled performance metrics collected
by the O/S, no matter whether is was Linux,
UNIX or System Z. Put more simply, the O/S
would tell you, the system administrator, how
it was actually doing as a part of its output,
but there was no sense by which you could tell
the O/S, as an input, what you expected of it.
That changed under System Z (or MVS), start-
ing about 20 years ago. IBM introduced the Sys-
tem Resource Manager, which allowed the sys-
tem administrator to tell the O/S what amount
of resources each user was entitled to use. This
new management ability required changes to the
O/S scheduler so that it became a Fair-Share
Scheduler (FSS) rather than just a Time-Share
Scheduler (TSS). UNIX vendors began provid-
ing FSS management about 10 years ago.

However, while the UNIX vendors were catch-
ing up to the mainframe, IBM introduced an
even more sophisticated management concept
called a Goal Mode scheduler (GMS). Under
GMS it became possible to set performance tar-
gets as inputs. The targets can be either response
time goals for selected applications or widows
of time within which certain batch workloads
should complete. Then, while the O/S is execut-
ing the entire mix of workloads, it also reports
how well it is achieving those goals. To explain
why this author believes a GMS-like capability
is what Linux should strive to emulate, this arti-
cle is organized as follows.

In Section 2 we review existing Linux perfor-
mance instrumentation and its attendant weak-
nesses. In Section 3 we discuss the issues sur-
rounding alternative scheduling classes for scal-
able server management. In Section 4 we dis-
cuss previous failed attempts to unify UNIX and
Linux performance instrumentation within the
Universal Measurement Architecture. In Sec-
tion 5 we briefly consider the performance in-
strumentation in virtual hypervisors and recog-
nise they also use an FSS scheduler, which we
discuss more thoroughly in Sections 6 and 7. Fi-
nally, we bring these various aspects together in
Section 8 to define the challenge for Linux in-
strumentation in the 21st century.

2 Existing Linux Perfor-
mance Instrumentation

The standard snapshot of system performance in
Linux is provided by the procinfo command.
More recently, the sysstat package has im-
plemented other traditional UNIX commands
such as sar, mpstat and iostat, as
well as several other performance tools in Linux.
All these performance metrics are global met-
rics (not per-process) and, with the exception of
sar, are not automatically time-stamped. The
iostat command combines information about
CPU utilization and I/O statistics for disks. The
mpstat command reports both global and per-
processor statistics. The sar command collects
and reports system activity information includ-
ing I/O transfer rates, paging activity, process-
related activities, interrupts, network activity,
memory and swap space utilization, CPU uti-
lization, kernel activities and TTY statistics, and
is distinguished by incorporating a time stamp
when the data was sampled. sysstat works on
both uniprocessor and multiprocessor machines.

Consider the number of disk IOs reported by
the iostat command. The commands syntax
is:

iostat [interval [count]]

The interval argument specifies the reporting pe-
riod or sample period in seconds. A count pa-
rameter can be specified in conjunction with the
interval parameter to control how many reports
are generated before iostat exits. The de-
fault output for count = 1 is shown in Ta-
ble 1. The first report always displays infor-
mation since the system was booted, while each
subsequent report covers the time period since
the last report. The single disk (dev3-0) has
averaged 1.68 transfers (IOs) per second. Based
on the discussion in Section 1, here is how it
works.

Suppose the sample period or interval is T =
30 seconds, and the number of IOs during that
interval is C = 50. The I/O rate is calculated as:

C

T
=

50
30

= 1.67 TPS (1)

which corresponds to the number in the third
column of the last row. This is the I/O through-
put, because throughput is defined as the number
of completed requests C per unit time T [2].

2

Table 1: iostat output from sysstat
avg-cpu: %user %nice %sys %idle

6.11 2.56 2.15 89.18

Device: tps Blk read/s Blk wrtn/s Blk read Blk wrtn
dev3-0 1.68 15.69 22.42 31175836 44543290

Table 2: mpstat output from sysstat
07:13:03 PM CPU %user %nice %system %idle intr/s
07:13:03 PM all 6.40 5.84 3.29 84.47 542.47
07:13:03 PM 0 6.36 5.80 3.29 84.54 542.47
07:13:03 PM 1 6.43 5.87 3.29 84.40 542.47

Now consider the output of the mpstat com-
mand in sysstat shown in Table 2. In this
case, the explicit command:

mpstat -P ALL

reveals that the platform has two processors la-
beled 0 and 1. The average CPU utilization can
be determined from the second row as: 100%−
84.47% = 15.53%. Note this is the same
value as: %user + %nice + %system =
6.40%+5.84%+3.29% = 15.53%. The calcu-
lation is performed in the Linux kernel in a way
similar to that for iostat. Suppose the sample
interval is T = 30 seconds and the CPU busy
time is B = 4.66 seconds. The CPU utilization
is the fraction of the sample interval for which
the CPU was busy (i.e., not idle):

B

T
=

4.66
30

= 0.1553 (2)

By definition [2], this is the same as the proces-
sor utilization. The same calculation has been
done in the first two rows of Table 1. The av-
erage CPU utilization is: 100% − 89.18% =
10.82%. For comparison, the more generall out-
put of mpstat for a 32-way multiprocessor is
shown in Fig. 1. This kind of format has been
available on many UNIX platforms for about 20
years.

The problem with these, and similar tools, is
that their output format is essentially the same
as it has been for more than 35 years. From
the standpoint of performance management, the
presentation of the 100–300 collected metrics,
should be user-selectable and rendered using
a more cognitively efficient visualization than
ASCII text; see e.g., Fig. 2(b). Moreover, all
metrics should automatically be time-stamped
and stored in a database such that an analyst
can drill down into more detail at any time. Al-
though sar and more recent GUI-based tools

Page 1 of 1untitled text 2

Printed: Friday, April 20, 2007 Apr 20, 2007 3:57:57 PM Printed For: Neil Gunther

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl!

 0 2 0 4191 7150 6955 1392 93 374 573 14 1433 78 22 0 0!

 1 2 0 179 11081 10956 1180 132 302 1092 13 1043 79 21 0 0!

 2 1 0 159 9524 9388 1085 141 261 1249 14 897 79 21 0 0!

 3 0 0 3710 10540 10466 621 231 116 1753 2 215 70 29 0 0!

 4 5 0 28 355 1 2485 284 456 447 30 2263 77 23 0 0!

 5 5 0 25 350 1 2541 280 534 445 26 2315 78 22 0 0!

 6 3 0 26 331 0 2501 267 545 450 28 2319 78 22 0 0!

 7 2 0 30 292 1 2390 232 534 475 23 2244 77 22 0 0!

 8 4 0 22 265 1 2188 220 499 429 26 2118 75 25 0 0!

 9 2 0 28 319 1 2348 258 513 440 26 2161 76 24 0 0!

 10 4 0 23 308 0 2384 259 514 430 22 2220 76 24 0 0!

 11 4 0 27 292 0 2366 237 518 438 30 2209 77 23 0 0!

 12 11 0 31 314 0 2446 253 530 458 27 2290 78 22 0 0!

 13 4 0 31 273 1 2334 223 523 428 25 2261 79 21 0 0!

 14 12 0 29 298 1 2405 247 521 435 25 2286 78 22 0 0!

 15 4 0 32 330 1 2445 272 526 450 24 2248 77 22 0 0!

 16 5 0 28 271 0 2311 219 528 406 29 2188 76 23 0 0!

 17 4 0 23 309 1 2387 253 537 442 25 2234 78 22 0 0!

 18 3 0 25 312 1 2412 257 534 449 26 2216 78 22 0 0!

 19 3 0 29 321 1 2479 262 545 462 31 2287 78 22 0 0!

 20 14 0 29 347 0 2474 289 541 457 24 2253 78 22 0 0!

 21 4 0 29 315 1 2406 259 534 469 24 2240 77 22 0 0!

 22 4 0 27 290 1 2406 243 531 480 25 2258 77 22 0 0!

 23 4 0 27 286 1 2344 235 531 445 26 2240 77 22 0 0!

 24 3 0 30 279 0 2292 228 518 442 22 2160 77 23 0 0!

 25 3 0 26 275 1 2340 227 538 448 25 2224 76 23 0 0!

 26 4 0 22 294 1 2349 247 529 479 26 2197 77 23 0 0!

 27 4 0 27 324 1 2459 270 544 476 25 2256 77 23 0 0!

 28 4 0 25 300 1 2426 249 549 461 27 2253 77 23 0 0!

 29 5 0 27 323 1 2463 269 541 447 23 2277 77 22 0 0!

 30 2 0 27 289 1 2386 239 535 463 26 2222 77 23 0 0!

 31 3 0 29 363 1 2528 304 525 446 26 2251 76 23 0 0!

Figure 1: Sample output of Solaris mpstat for a
32-way multiprocessor.

do provide some of those requirements, our vi-
sion demands a more unified approach across all
Linux platforms. The first step in that direction
is to define a common data structure (a tree) for
all the memory-resident performance counters.
This has already been done in AIX and Solaris,
for example, via the rstat and kstat data
structures, respectively. An even more unified
specification has already been formalized over a
decade ago, and we shall examine that design in
Section 4.

3 A Fork in the Road?

Linus Torvalds has been quoted as saying he be-
lieves the current kernel instrumentation suffi-
ciently addresses real-world performance prob-
lems. Elsewhere, I have read that he would like
to keep Linux “lean and mean.” Taken in the
light of the following counter points, this design
goal reflects a rather narrow view of what Linux
might achieve:

• How can current Linux instrumentation be
sufficient when older UNIX performance
instrumentation is still not sufficient for

3

modern multi-tier performance manage-
ment?

• UNIX instrumentation was not introduced
to solve real-world performance problems
(see Section1). It was surely necessary but
that does not make it sufficient. We are still
living with that legacy in Linux.

• By now, I would have anticipated (naively,
it seems) to have at my fingertips, a com-
mon set of useful performance metrics to-
gether with a common means for accessing
them across all UNIX and Linux platforms.

• Several attempts have already been made
to standardize and improve both UNIX and
Linux performance instrumentation.

We take up these points in subsequent sections.
In addition, desktops, laptops and mobile de-

vices are also becoming multiprocessor-based
via the new multicore technology viz., multiple
processor cores on a chip. Nonetheless, it can be
argued that unlike servers, those platforms will
continue to run essentially single-threaded ap-
plications. In other words, each core will run a
separate application. There, I would agree that
the Linux must remain lean and mean.

However, when it comes to mid-range and
high-end servers, a key requirement for scala-
bility is to be able execute multiple threads con-
currently while accessing shared writable-data.
My experience building commercial symmet-
ric multiprocessors (SMP) at Pyramid-Siemens,
showed that up to 70% of the development time
was spent getting applications (e.g., relational
database management systems) to scale well on
a symmetric UNIX kernel. An efficient symmet-
ric kernel requires more code (not less) in order
to implement vital control structures, such as:

• processor affinity

• mutex locking

• spin-waiting

• preemption control

• processor yield

These controls provide more efficient serial ac-
cess to shared resources, thereby dramatically
improving the scalability of SMP applications.
The same is true for Linux-based SMPs and the
Linux 2.6 scheduler already supports processor

affinity and preemption control. Moreover, such
controls take on renewed significance when it
comes to developing applications for multicores,
because those chips will always be the cheap-
est implementation, not the most scalable imple-
mentation. Software and O/S scalability may be
the only way to offset such hardware limitations.

The Linux 2.6.23 kernel comes with a mod-
ularized scheduler and a new addition called a
Completely Fair Scheduler (CFS). It is a com-
plete rewrite of the Linux task scheduler aimed
at both desktop tasks and server workloads.
As already mentioned, single-user desktops and
multi-user servers lie at the extremes of a scal-
ability spectrum. Another dimension is interac-
tive and batch tasks; the former requiring opti-
mal response time performance, while the latter
needs optimal throughput performance.

Historically, the mainframe O/S was aimed
at batch processing large amounts of data, with
interactive performance being added later. The
historical development of UNIX took exactly the
opposite path and thus, both schedulers carry
some historical bias. According to the docu-
mentation [3], CFS tries to run the task with the
“gravest need” for processor time and this helps
to assure that every process gets its fair share
of processor. It may also benefit batch work,
although the original design motivation was to
improve desktop responsiveness by virtue of a
Rotating Staircase DeadLine (RSDL) scheduler.

One sees that it is easy to become con-
flicted over which type of workloads, and which
type of markets, Linux should aim for. Per-
haps it is time for the Linux development com-
munity to take seriously Yogi Berra’s famous
malapropism: “When you come to a fork in the
road, take it.” Whether such a fork should be in-
terpreted as a split between desktop and a sever
release trees or compilable modules, is beyond
the scope of this article.

4 The Universal Measure-
ment Architecture

It is a well-kept secret that between 1990 and
1995, a group of UNIX vendors which included:
Amdahl Corp. (now owned by Fujitsu), BGS
(now part of BMC), Hitachi, HP, IBM, NCR,
OSF, Sequent (now owned by IBM) and sev-
eral other companies, designed a unified frame-
work for the capture and transport of distributed

4

performance data called the Universal Measure-
ment Architecture or UMA (pronounced “you-
mah”). This level of architectural organization
is required to coherently address the difficul-
ties of collecting performance data from the dis-
tributed instrumentation contained in multiple
server tiers that support multiple software ap-
plications. It is also more efficient than SNMP
(Simple Network Management Protocol).

Ironically, the motivation for UMA came
from the mainframe world. Amdahl Corpora-
tion was in the business of making mainframe
hardware clones that could run MVS from IBM.
But Amdahl also wanted to sell into the Tele-
com industry and their requirement was that all
machines must run UNIX. So, Amdahl devel-
oped a version of UNIX called Unix Time Share
or UTS. Because Amdahl was aware of the RMF
and SMF instrumentation under MVS (see Sec-
tion 1), they originally designed UMA specifi-
cally for UTS. The generalized UMA specifica-
tion is available online from the Open Group [4].

O/S vendors avoid investing in alterna-
tive instrumentation if they do not per-
ceive any demand, whilst system admin-
istrators cannot demand instrumentation
they have not conceived.

The UMA reference model defines four layers
and two interfaces as shown in Fig. 2(a). These
layers and interfaces are briefly described from
the bottom up, starting with the Data Capture
Layer.

Data Capture Layer: The Data Capture Layer
is responsible for collecting raw data. Its
architecture together with the Data Capture
Interface (DCI) allow data from multiple
sources to be collected by a single con-
sumer above the DCI, and this in turn im-
proves the synchronization of the data col-
lection.

Data Capture Interface: The Data Capture In-
terface is the interface between the Mea-
surement Control Layer and the Data Cap-
ture Layer. It provides the means for dy-
namically extending data collection to new
providers such as databases without affect-
ing existing programs.

Measurement Control Layer: The Measure-

ment Control Layer schedules and synchro-
nizes data collection through the Data Cap-
ture Interface.

Data Services Layer: The Data Services Layer
accepts measurement requests from a Mea-
surement Application Program or MAP
(Fig. 2(b)) through the Measurement Layer
Interface (MLI), and distributes data to
the destination requested by the MAP. A
destination may include, the MAP itself,
a private file or the UMA Data Storage
(UMADS), which will be described later.

The /dev/kmem interface has historically
been the primary interface used by UNIX system
performance measurement utilities for extract-
ing data from the kernel. If a program is aware
of the name of a particular data structure, it can
find the virtual address of that data structure by
looking at the symbol table of the bootable ob-
ject file. It can then open /dev/kmem to seek to
and read the value of that data structure. The ad-
vantage of this approach is its generality: if the
address of a data structure can be found, its value
can be read, but its generality is also a disadvan-
tage. Since almost any data structure can be used
to provide performance data, the tendency is to
do so without regard to whether it is supported.
This makes it very difficult to maintain a per-
formance application across releases when data
structures change. More recently, data structures
for performance metrics, such as kstat on So-
laris and rstat on AIX have made data col-
lection more portable. A similar data structure
organization has been proposed [5] for Linux
but as far as this author is aware, it has not
been implemented. To address some of these
issues and limitations, the UMA specifications
includes definitions for:

• Data Pool Specification to define common
metrics

• Data Capture Interface (DCI) for data
providers

• Measurement Layer Interface (MLI) for
performance tools

The obvious question that follows from all this
is, why is UMA still not available from the same
UNIX vendors who helped to define it?

The real answer is complicated but part of
it is that O/S vendors, being commercial enter-
prises, are generally loath to promote alternative

5

to determine resource utilization, predict system capacities and growth paths, and even to

compare CPU models for making procurement decisions.

 Kernel Data
• cpu
• disk
• memory
• network

• events
• traces

Application Data
• subsystems:
 - oltp
 - dbms
• user applications

• events
• traces

MLI (Measurement Layer Interface)

DCI (Data Capture Interface)

 Data Services Layer

• access network
• format data to standards
• maintain archive
• distribute data

Measurement Control Layer

 • merge requests
 • synchronize capture
 • timestamp

 System
Performance
 Monitor

 Network
 Monitor

System
 Model

Tuning
Advisor Agents

Agents

Data Capture Layer

Measurement Application Layer

 Figure 1. The UMA Reference Model

Although the open system concept is creating a revolution in applications development

and system migration paths, certain capabilities-such as performance management-have

not been standardized. Currently, no UNIX system vendor provides enough performance

management functionality, and certainly no two vendors provide equivalent functionality.

Key areas being considered by the CMG/PMWG include performance data availability

and interfaces for its collection. Until the data and interfaces are standardized, each

computer vendor, performance software vendor, or large end user is faced with the task of

kernel modification to collect the necessary data, development of a proprietary kernel

interface to move the data to user-space, and development of "roll-your-own"

performance monitoring and management software system. Until such interfaces are

standardized, no compatible performance management tools can be built because of the

(a) Open Group UMA reference model.

Table 1.

Although the format in Table 1 resembles SAR output, any similarity is purely

superficial. Many other system performance metrics are attached to each UMADS

interval record. In fact, a page three foot wide would be required to display all the fields

belonging to this example.

Figure 6.

6. Summary

We have presented an overview of the Universal Measurement Architecture (UMA) that

is being standardized by X/Open. Amdahl was a founding member of the PMWG and

has developed a non-DCI subset of the UMA specification (A+UMA) as a suite of

performance management products. These A+UMA products serve the dual purpose of

(b) UMA tool (MAP) showing processor utilization as a time series and as a histogram. A
sliding control enables seemless transition between both monitored and historical data.

Figure 2: UMA architecture and tools

6

instrumentation and tools if they do not perceive
any demand that will ensure a significant return
on their development investment. The UMA
working group should also have begun market-
ing their conception before and during its de-
velopment. Instead they just assumed it would
sell itself once the UMA specification was com-
plete. And, like ships in the night, system ad-
ministrators cannot demand better instrumenta-
tion which they have not yet conceived. UMA
was a vendor conception, not a user conception,
but it ended up being a solution in search of
problem. The problem is still there, but UMA
remains unrecognized as a possible solution.

Whether or not one agrees with the details
of the UMA specification, the fact remains that
conceptually it represents one way by which to
achieve a unified interface to both UNIX and
Linux server instrumentation such that a system
administrator no longer need be concerned with
whether their performance management scripts
will run on both platform A and platform B
without modification in a multitiered environ-
ment. In retrospect, it is rather depressing to
think that many people thought we would al-
ready be using natural speech to communicate
with computers by the turn of this century, when
in fact we cannot even guarantee that a textual
script will run on any two Linux distributions.

5 Virtual Machine Managers
and Hypervisors

Virtualization (of services) is a hot topic because
it offers server consolidation, co-located host-
ing, distributed web services, isolation, secure
computing platforms and application mobility,
without the need to be concerned about how all
that gets accomplished. At least, that is the mar-
keting pitch and to a large extent the current per-
ception. But as anyone who has tried to tune
virtual machine managers (e.g., XenServer or
VMWare) for performance knows, the realities
can be a little different.

All virtualization is about illusions and al-
though it is perfectly reasonable to per-
petrate such illusions upon a blissfully
unaware user, it is should be considered
forbidden to propagate those same illu-
sions to a system administrator.

For those not already familiar, virtualization,
in the sense it is being used here, means that
an arbitrary number of different O/S instances
or guests (e.g., Windows XP, MacOS X, and
Linux) can run concurrently on the same plat-
form under the overarching supervision of a vir-
tual machine manager or hypervisor, which pro-
vides the interface between each O/S and the
actual hardware resources. Beyond the O/S in-
stance seen by each user, the details of the hyper-
visor are generally hidden. Like all things vir-
tual, virtual machine managers are really about
illusions and those illusions can be a source of
real problems because too many important de-
tails remain hidden from the system administra-
tor due to a lack of proper instrumentation.

Figure 3: Organization of XenServer 3.0 hyper-
visor supporting Linux, Linux SMP, and Win-
dows XP O/S guests.

What would proper instrumentation look
like? To answer that question, one should un-
derstand something about the basic principles of
operation of a virtual machine manager. We dis-
cuss that in the next section.

6 Getting Beyond Time Share
The partitioning of resources in a physical ma-
chine to support the concurrent execution of
multiple O/S guests poses several challenges
(Fig. 3). First, each O/S must be truly isolated
from one another. It is unacceptable for the exe-
cution of one O/S to adversely affect the perfor-
mance of another. This is particularly true when
virtual machines are owned by mutually untrust-

7

ing users. Second, it is necessary to support a
variety of different guests to accommodate the
heterogeneity of popular applications. Third,
and most importantly from a management stand-
point, the performance overhead introduced by
each guest should be small.

Historically, Linux and all UNIX sched-
ulers have been time-share schedulers by de-
sign. In Section 3, we noted that Linux 2.6
now incorporates other scheduling classes, such
as: kernel/sched_fair.c for CFS and
kernel/sched_rt.c for real-time schedul-
ing. Another type of scheduler, which has yet
to be implemented in Linux is FSS (see Sec-
tion 1); not to be confused with CFS. FSS re-
quires the explicit awarding of resource shares
to users by the system administrator. Moreover,
it is not commonly recognized that the FSS also
forms the underpinnings of the virtual machine
managers in Section 5 (see [6] for a complete
discussion). To better understand FSS, we first
review TSS operations.

3

Physical

CPU

Sleeping

Runnable

Running

Expired

Figure 4: Time-share scheduler model including
time-quantum expiration.

The purpose of a TSS is simply to provide
each user with the illusion that they are the only
person using the physical platform. In Linux,
each user process is in one of three possible
states: running, runnable or sleeping. If a pro-
cess is running, it will be in the lower part of
Fig. 4 executing on the physical CPU. If the pro-
cess is runnable but not executing, then it will re-
side in the waiting line or run-queue [2]; shown
immediately to the left of the physical CPU. If
a process has not completed execution when the
time-quantum expires (e.g., 10 ms or 50 ms in

VMWare) it is returned to the tail of the run-
queue. Otherwise, the process is sleeping be-
cause it is not ready to execute, perhaps waiting
on an I/O to complete, as shown in the upper part
of diagram.

4

Virtual CPUa

Sleeping

Runnable

Running

Virtual CPUb

Sleeping

Runnable

Running

Physical

 CPU

Figure 5: Fair-share scheduler model of two user
groups Groupa and Groupb each with virtual
CPUa or CPUb which share the same physical
CPU. Time-quantum expiration has been sup-
pressed for clarity.

By contrast, the FSS shown schematically
in Fig. 5, provides each of the users in either
Groupa or Groupb with the illusion that they
possess an entire platform of their own—a vir-
tual machine—whose performance is scaled ac-
cording to their resource entitlement (Eguest)
i.e., the effective speed of virtual CPUa or
CPUb. Entitlement is awarded by the system
administrator through the allocation of shares;
just like owning equity shares in a corporation.
The physical service time Sguest for each guest
process (if it were to run in isolation) becomes a
virtual service time:

SV
guest =

Sguest

Eguest
, (3)

which is either faster or slower than Sguest, ac-

8

cording to how it is scaled by the awarded share
entitlement.

XenServer in Fig. 3 uses a form of FSS called
Borrowed Virtual Time (BVT) as the default
scheduler. Other options are also available e.g.
real-time scheduling. BVT provides propor-
tional FSS for processor scheduling based on
weights. Each runnable guest receives a share
of the processor in proportion to its weight. For
example, a single processor VMWare guest OS
is allocated 1000 shares by default [6]. Share al-
location can have a significant impact on overall
performance.

FSS introduces a scheduling superstructure
on top of conventional TSS to connect processes
with users and their resource entitlements as
represented in the following, highly simplified,
pseudocode:

VM Share Scheduling: Polls every 4000 ms
(f = 250 mHz) to compare physical pro-
cessor usage per user entitlement (Fig. 5).

for(i = 0; i < USERS; i++) {
usage[i] *= decayUsage;
usage[i] += cost[i];
cost[i] = 0;

}

VM Priority Adjustment: Polls every 1000
ms and decays internal FSS process prior-
ity values (Fig. 5).

priDecay = Value in [0..1];
for(k = 0; k < PROCS; k++) {

sharepri[k] *= priDecay;
}
priDecay = a * p_nice[k] + b;

Time Share Scheduling: Polls every physical
processor tick to adjust process priorities
(Fig. 4).

for(i=0; i<USERS; i++) {
sharepri[i] +=

usage[i] * p_active[i];
}

Process-level polling is essentially the same as
standard TSS, while VM-share polling controls
process-level capacity consumption.

7 Capping Resources

For any pair of users with entitlements E1 and
E2, the goal of FSS can be stated as:

lim
t→∞

ρ1

ρ2
=
E1

E2
, (4)

where ρ1 and ρ2 are the respective resource uti-
lizations of each user as defined in Section 2. In
other words, the long run goal of FSS is to try
and match the sampled ratio of utilizations (ex-
pressed as a percentage) to the ratio of their en-
titlements (expressed as a percentage). Among
the reasons for wanting to do this are, resource
management and cost accounting. The latter
concept is not only unfamiliar to Linux users,
but is probably anathema to them. The reality
is, however, that cycles are not free and some
datacenters already charge department managers
for computer resource consumption. There is
every reason to believe this trend will become
more widespread as all of IT endeavors to be-
come greener.

Suppose you are entitled to receive 10% of
processing resources by virtue of being allocated
10 out of a possible 100 system wide proces-
sor shares. In other words, your processing en-
titlement would be 10%. Further suppose you
are the only user on the system. Should you
be entitled to access 100% of the processing
resources? Most system administrators believe
it makes sense (and is fair) to use all of the
resources rather than have a 90% idle server.
But can you access 100% of the processing re-
sources if you only have 10 shares? You can if
the FSS only considers active shares to calculate
your entitlement. As the only user active on the
system, owning 10 shares out of 10 active shares
is tantamount to a 100% processing entitlement.

This natural inclination to make use of oth-
erwise idle processing resources really rests on
two assumptions:

1. You are not being charged for the consump-
tion of processing resources. If your man-
ager only has a budget to pay for a maxi-
mum of 10% processing on a shared server,
then it would be fiscally undesirable to ex-
ceed that limit.

2. You are unconcerned about service targets.
Its a law of nature that users complain
about perceived changes in response time.

9

If there are operational periods where re-
sponse time is significantly better than at
other times, those periods will define the
future service target.

There can, however, be potential problems due
to user-perceived changes in performance. Con-
sider the following example based on the anal-
ogy of capacity planning for a business recep-
tion.

You decide to throw a big business celebration
in a hotel and invite 200 guests. You pay $2000
for 2 reception rooms along with catering from
the hotel. Each reception room is designed to
comfortably hold 100 people.

Capping Enabled: It turns out, unexpectedly,
that 220 guests actually show up space be-
comes a little cramped (Fig. 6(a)). You
are, however, getting what you paid for. It
would not have been wise to purchase an
extra room for such a small overflow. This
situation is analogous to FSS with capping
enabled.

Capping Disabled: The hotel grants you per-
mission to occupy the third reception room
(Fig. 6(b)) until the other party, who have
purchased that room, actually arrives. This
eases your congestion temporarily until
other party does arrive. Then, your guests
are going to feel uncomfortable dealing
with the congestion of regrouping back into
your two rooms. This situation is analo-
gous to FS scheduling with capping dis-
abled or not implemented.

Capping Inactive: Another possibility is that
only 100 guests show up to your party
(Fig. 6(c)). You have now purchased more
capacity than you actually needed but your
guests are comfortable. This is analogous
to TS scheduling, since the capping bound-
ary is not exercised.

The state of entitlement capping can have a crit-
ical impact on the observed performance of ap-
plications running under FS control.

In this example, if capping depends on the
number of active shares in the total pool of
shares (as opposed to the total allocated pool),
then Fig. 6(a) corresponds to the least upper
bound on capacity, while Fig. 6(b) corresponds
to the greatest upper bound. Such dynamically
changing capacity can have detrimental conse-
quences for both performance perceived by the

users, and the overall capacity allocation strat-
egy.

39

(a) An unexpected 220 guests occupy the two purchased reception rooms
(dashed line) each of which is intended to hold 100 people comfortably.

39

(b) An unexpected 220 guests can temporarily occupy three rooms (dashed
line) until another party arrives to claim the third room. The uncomfortable
congestion upon regrouping into two rooms will be noticed by the guests.

39

(c) Only 100 guests show up and although they occupy both purchased rooms
(dashed line), they tend to congregate around the buffet table to the left. The
purchased double-room capacity is underutilized.

Figure 6: Reception room analog of various cap-
ping scenarios under FSS

In summary, understanding FSS and capping
is important for the following reasons. It is im-
portant to understand FSS in its own right be-
cause if offers real-time capacity management;
something that current Linux does not provide.
FSS is a preliminary requirement for higher
levels of capacity management such as GMS,

10

which we discuss in Section 8. It not widely
known that FSS forms the underpinnings of all
virtual machine managers like XenServer and
VMWare. It is also important to understand that
with the implementation of alternative sched-
ulers comes the requirement for additional in-
strumentation.

8 The Challenge
Based on the preceding discussion, it does not
take much imagination to guess what the fu-
ture of Linux server instrumentation could and
should look like. We should turn to the main-
frame as a role model. Moreover, Linux is no
stranger to the IBM mainframe [8], where it can
run in a System Z logical partition or LPAR.

The mainframe is not a dinosaur that
became extinct due to competition from
cheap microprocessors. Instead, it re-
mains today as another powerful data-
processing server on the network. Linux
has the opportunity to match it and per-
haps eventually surpass it.

The relevant mainframe features for Linux
servers are:

1. Performance management via a fair-share
scheduler and its appropriate instrumenta-
tion.

2. Performance management via a goal-mode
scheduler and its appropriate instrumenta-
tion.

3. Single image cluster management.

The first of these features has already been
discussed in Sections 6 and 7 and at least one
variant already exists as XenServer. Although
the second feature is entirely unknown in UNIX
and Linux, GMS is the logical extension of the
implicit goal (Eqn. 4) for FSS. GMS requires
that the system administrator input performance
targets to the O/S. These targets can be either
response time goals or batch execution goals
(e.g., scientific workloads). Using the same kind
of statistical sampling mechanism described in
Section 2, the actual resource consumption (out-
put) is reported along with the goal (input).

The details of how GMS works would take
us too far afield, suffice to say that it must not
only monitor resource utilization, as does FSS,
but it must also monitor wait-time in the run-
queue, because wait time is directly proportional
to queue length [1, 2]. If, for example, a work-
load is over-achieving with respect to its pro-
cessing performance goal in the previous sample
period (i.e., it got too many CPU cycles) , GMS
will penalize that process by placing it closer to
the tail of the run-queue than the head. As a con-
sequence, it will take longer to return to the pro-
cessor in the next sample period, and vice versa
for under-achievers.

Of course, none of this comes for free. The
cycles have to come from somewhere and the
system administrator must prioritize the work-
loads in such a way that the favored work gets
enough cycles to achieve the desired perfor-
mance goals. Within the system performance
reporting, there is a comparison of the specified
goal and the actual value achieved. The ratio of
these two metrics is called the performance in-
dex. You can expect that this will all become
more automatic (self-tuning) in future releases
of System Z.

The third feature, cluster management, is used
to aggregate the resources of multiple main-
frames in such a way that they can be managed
as single platform. The IBM terminology for
such a collection of mainframes is Sysplex and it
requires an additional piece of hardware, called
“the coupling facility,” to act as both a memory
interconnect and cache. At the hardware level, it
shares a lot of features in common with the Be-
owulf platform [9]. Beyond the platform, how-
ever, the Sysplex is capable of running multi-
ple applications, e.g., billing and database work-
loads, as though it were a single system from a
management perspective.

The purpose of this section is not to suggest
that Linux should aim to replace the mainframe,
although there would be nothing wrong with
that. Good system management facilities are
currently missing in Linux and the mainframe
gives us a good idea of what those future facili-
ties could be.

9 Conclusion

A significant opportunity exists for Linux in
the server marketplace. We have attempted to

11

present a vision of how that opportunity might
be met. Grasping that opportunity does not in-
volve the typical adrenalin rush associated with
faster speeds and feeds or more GigaHertz and
MegaBytes. The real challenge is achieving
more coherent system management through bet-
ter O/S instrumentation than is available to-
day on Linux servers. In this article, we have
turned to the mainframe as a plausible role
model for what true server management should
look like. Whereas development on commer-
cial UNIX servers is severely constrained by the
need to show return-on-investment, Linux is rel-
atively free of such financial demands.

But with freedom comes responsibility and,
in the case of Linux, highly organized devel-
opment. Prima facie, the required organization
would seem to run counter to the motivations
and culture of the Linux development commu-
nity at large, so perhaps there is no will or con-
sensus to do things differently and the aforemen-
tioned opportunity will be lost. On the other
hand, there may be a role for university and other
research groups to pool both organizational and
research talent to drive the development process
in the required way. A successful example from
that arena is the Beowulf cluster project spon-
sored by NASA. Obviously, IBM has also spon-
sored some non-commercial Linux-related de-
velopment projects.

Returning to the issues raised in Section 3. A
certain faction of developers would like to keep
Linux lean and mean. In this article, I have tried
to survey what I see as an opportunity for server-
side Linux. If the view of desktop performance
is analogous to a sports car, then what I have
been discussing here is closer to a vision of a
Linux train or jetliner. Logically, it seems in-
compatible to have both modes of transport con-
tained in the same code base.

In any case, there is a crying need for more
coherent server management in the IT indus-
try, but we are generally bogged down by frag-
mented proprietary interests on the part of com-
mercial vendors. As a consequence, we are now
10–20 years behind mainframe system manage-
ment. Linux, on the other hand, is relatively free
of such concerns and therefore offers a unique
way out of this impasse and a road forward to
21st century server management through better
O/S instrumentation.

The Author

Neil Gunther, M.Sc., Ph.D., is an inter-
nationally recognized IT consultant who
founded Performance Dynamics Company
(www.perfdynamics.com) in 1994. Prior to that,
Dr. Gunther held research and management
positions at JPL/NASA (Voyager and Galileo
missions), Xerox PARC and Pyramid/Siemens
Technology. Currently, Dr. Gunther is working
on Quantum Information Technologies. He is
a member of the AMS, APS, ACM, CMG and
IEEE.

References
[1] N. J. Gunther, “Load Average enträtselt und

erweitert Leistungsdiagnostik,” Linux Maga-
zin, p. 84, 08/2007

[2] N. J. Gunther, “Berechenbare Perfor-
mance,” Linux Technical Review, Ausgabe
02, p. 112, 2007

[3] A. Kumar, “Multiprocessing with the
Completely Fair Scheduler,” http:
//www.ibm.com/developerworks/
linux/library/l-cfs/

[4] “Systems Management: Univer-
sal Measurement Architecture,”
http://www.opengroup.org/pubs/
catalog/c427.htm

[5] R. Pettit, “Formalizing Performance Metrics
in Linux,” CMG Conference, p. 262, 1999

[6] N. J. Gunther, Guerrilla Capacity Planning,
Springer-Verlag, 2007

[7] http://www-03.ibm.com/servers/
eserver/zseries/zos/wlm/

[8] http://www-03.ibm.com/systems/
z/os/linux/

[9] http://en.wikipedia.org/wiki/
Beowulf %28computing%29

12

