Moving Beyond Monitoring ..

. PDQ (Pretty Damn Quick)

Neil J. Gunther

Abstract

Performance management can be broken into three sequen-
tial processes: performance monitoring, performance analy-
sis, and performance modeling. (Fig. 1) Monitoring is the
theme of this issue, analysis refers to the capability of look-
ing for patterns in monitored data that reside in a database,
while modeling attempts to use monitored data to predict
future events, such as resource bottlenecks. PDQ (Pretty
Damn Quick) is a queueing analysis tool aimed at expedit-
ing the prediction process.

Performance monitoring

Performance analysis

Performance modeling

Past Present Future

Figure 1: A schematic timeline showing the relationship be-
tween performance monitoring, analysis, and modeling

1 Introduction

Having selected and installed monitoring tools for your en-
vironment, you can go a lot further. There are at least three
stages in successful performance management: performance
monitoring, performance analysis, and performance model-
ing. (Fig. 1) Each of these stages is related like the layers of
an onion.

The core requirement is to collect monitored performance
data. Without that, the performance characteristics of sys-
tems and applications cannot begin to be quantified. That
is the monitoring phase. But monitoring alone is akin to
watching needles jitter on the dashboard of a car or the
cockpit of an aircraft. To assess the future picture, it is im-
portant to look out of the window and see what is down the
road or what other aircraft may be flying near you. The
problem with just relying on monitoring alone is that it
only provides a short-term view of system behavior (Fig. 2).
Looking out the window provides the longer-range view, but
the further away things are the more difficult it is to discern
their importance.

In addition, the monitored performance data needs to be
time-stamped and stored in a performance database. This
is the performance analysis layer of the onion. Performance

analysis enables you to review monitored data from an his-
torical perspective to detect patterns and extract trend in-
formation.

Daily host4 Average ¥ Processes in Run Queue (Load Average)

Number Processes
2

it =
L i
i 4"’%"\. _'»’i,_frj

00; 00

Lt b ;
08: 00 1200 1800
E1 minute average B S winute average B 15 minute average

0&: 00

1 minute average Current:
5 minute average Current:
15 minute average Current:

5. 495
5.817
5,338

2,540 Min:
2,587 Min:
2,599 Min:

Average:
Average:
Average:

0. 0s0 Max:
0,250 Max:
0. 600 Max:

13,838
10,312
7. 765

Last data entered at Sat May € 11:10:04 2000,

Figure 2: A 24 hour sample of monitored load-average data,
e.g., from procinfo, displayed as a time series using Orca
tools for Linux [1]

The last layer of the onion is performance modeling or
performance prediction—the stage in performance manage-
ment that allows you too look out the window and see ahead.
Just like weather forecasting (to draw on another analogy),
you need supplemental tools that can manipulate the data
in the performance database to parameterize performance
models. Afterall, it is next impossible to try and forecast
the weather by simply listening to the leaves rustle in the
wind.

There are two classic approaches to performance mod-
eling: statistical data analysis and queueing models. Al-
though these methodologies are not mutually exclusive, the
distinction between them can be summarized as follows.
Statistical data analysis, the kind of thing that is done in
every accounting department, is based on modeling trends
in the raw data. Many clever techniques and tools have been
developed by statisticians over the years and much of this
intelligence is available in open source statistical modeling
packages like R [2]. The limitation of this approach, how-
ever, is that it is based solely on previous data. If the future
holds some surprises (good or bad) that were not somehow
foretold in the current data, the forecast will be unreliable.
Those who play the stock market know that this happens
all the time.

Queueing models, on the other hand, are not subject to
these limitations. The reason is that queueing models, by
definition, require that an abstraction of the real system be
constructed using the queueing paradigm. The trade off is
that this typically involves more work than just doing trend
analysis on raw data, and it assumes that the queueing ab-
straction is a faithful representation of the real system. To
the degree that it is not, its predictions will also be unre-

liable. As I attempt to show in this article, constructing
queueing models is nowhere near as difficult as it may seem
from this comparison. In fact, it is often stunningly simple.

We begin by reviewing some basic queueing concepts
based on the familiar example of shopping in a grocery
store. FEach checkout stand is a simple queue. Next, we
extend these fundamental concepts to predicting the scal-
ability of a 3-tier e-commerce application. At the end of
this article we consider some more realistic extensions to
the performance models presented here and we offer some
guidelines for building predictive performance models. All
the examples are expressed in Perl using the open source
queueing analyzer called Pretty Damn Quick (PDQ), which
is maintained by the author and Peter Harding, and can be
downloaded from http://www.perfdynamics.com/Tools/
PDQcode.html. The current release of PDQ allows perfor-
mance models to be built in C', Perl and python, while the
next release will extend PDQ to Java and PHP.

2 Why Queues?

Buffers and stacks are ubiquitous forms of storage in com-
puter systems and communication networks. A buffer is a
type of queue where the order of servicing the request is
determined by the order in which it arrives into the buffer.
This is called FIFO (first-in, first-out) or FCFS (first come,
first served) in queueing parlance. By contrast, a stack is
serviced in LIFO (last-in, first-out) order, so it is a LCFS
(last-come, first served) queue. In Linux the history buffer
is a familiar queue for storing recently invoked shell com-
mands. Like the history buffer, any physical implementa-
tion is generally constrained to a finite amount of storage or
capacity. Theoretically, however, queues can have unlimited
or unbounded capacity. This is the case in PDQ.

A queue is an abstraction used to represent a shared re-
source. Consider a very familiar resource; the checkout at
a grocery store or a hypermarket. This resource comprises
requests for service (the people waiting in line) and a ser-
vice center (the cashier). Once they have completed their
shopping, everyone in the store would like to get out of it
as quickly as possible; that’s a performance goal. That goal
translates to spending the least time getting through the
checkout; technically known as the residence time (R).

A b

Figure 3: Customers queueing in a grocery store

Once you choose a particular checkout isle, your residence
time consists of two components: the time you spend wait-
ing in line to get to the cashier, plus the time it actually
takes to get serviced by the cashier, i.e., have your groceries
accounted and paid for.

If we assume for the moment that everyone in line (in-
cluding you) has more or less the same amount of grocery
items in their respective shopping carts, then their average
service time will be the same. Moreover, the length of the
waiting line will be directly related to the number of people
waiting. When there are very few people in the store, your
average waiting time will be shorter rather than when the
store is very busy.

Queue \ Server/cashier

New ‘) Serviced

customers —H» —— customers

arriving / ffffffffffffffffff > departing
Waiting Customer
customers In service

Figure 4: Components of a symbolic queue in Fig. 3

The queue abstraction (Fig. 4) offer a powerful paradigm
for characterizing the performance of computer systems and
networks (amongst other things) because they tie together
the otherwise disparate performance metrics that are mea-
sured by monitoring tools.

Table 1: Performance Metrics of Interest

Symbol Metric PDQ
A Arrival rate Input
S Service time Input
N User load Input
Z Think time Input
R Residence time Output
R Response time Output
X Throughput Output
p Utilization Output
Q Queue length Output
N* Optimal load Output

One of the relationships between the metrics in Table 1
that we shall draw on throughout this article, is that be-
tween the residence time (R), the service time (S) and the
arrival rate (A):

S
=133 (1)

We can think of (1) as a very simple performance model.
Notice that the model inputs go on the right-hand side of
(1), while the model output appears on the left-hand side.
PDQ works exactly the same way.

This simple model tells us immediately that if traffic in the
store is light, such that there are no other arrivals (A = 0)
at your checkout stand (Fig. 3), the time it takes you to get
through checkout (your residence time) is simply the your
own service time to have your groceries accounted and paid
for.

On the other hand, if traffic in the store is heavy, such
that the product AS — 1, the residence time climbs very

rapidly. This follows from the fact that the queue length is
given by:

Q=AR (2)

In other words, the residence time is directly related to the
queue length by the arrival rate, and vice versa.

Equation (2) also provides contact with monitored data.
The load-average data in Fig. 2 are actually instantaneous
values sampled over relatively short time intervals, e.g., 1
minute. The queue length (Q) is time-averaged over the
entire measurement period of 24 hours. More intuitively, @
corresponds to the height of an imaginary rectangle that has
the same area as that under the monitored data curve over
the same 24 hour period.

An analogous relationship also holds if the waiting is ex-
cluded from the residence time (R) in (2):

p=2AS. (3)
In other words, if we replace R by the service time S on
the right-hand side, the quantity on the left-hand side (the
output) becomes equivalent to the utilization in Table 1.

The theory of queues is very young from a mathemati-
cal standpoint; less than 100 years, in fact. Agner Erlang
developed the first formal queueing model in 1917 to ana-
lyze the performance of the Internet of his day—the tele-
phone system. He was tasked with determining the buffer
size for switches that routed trunk calls from Copenhagen,
Denmark. Today, we call this a single queue model, and
present more details about single queue models in Sections 4
and 10.

One of the next major advances in the theory of queues
was in 1957, when James Jackson derived the first formal so-
lutions for the performance of a network or circuit of queues,
rather than just one queue. This result remained rather
academic for another 20 years until its applicability to engi-
neering the Internet was realized. His queueing model was
accurate to within five percent of the measured performance.

In 1967, some fifty years after Erlang’s first queueing
model, a Ph.D. student, named Allan Scherr, used a queue-
ing model to estimate the performance of the CTSS and
Multics time-share computer system, which in many re-
spects were the precursors to the UNIX and ultimately, the
Linux operating systems.

By the late 1970’s and early 1980’s several new theoreti-
cal developments led to simplified algorithms for computing
the performance metrics of queueing circuits and it is these
algorithms that are incorporated in tools like PDQ.

The latest developments in queueing theory have to do
with modeling so-called self-similar or fractalized packet
traffic on the Internet. These concepts lie well beyond what
we shall treat here, but the interested reader can explore
them more in Chapter 10 of reference [4].

3 Assumptions in PDQ Models

One of the underlying assumptions embedded into PDQ is
that the average duration between arrivals and the average

duration of service periods, are both statistically random-
ized. Mathematically, this means that each arrival and ser-
vice event belongs to a Potsson process. Then, the durations
correspond to the average or mean of a negative Fxponen-
tial probability distribution. Erlang found that telephonic
traffic does conform to this requirement. There are meth-
ods [5] to check how well your monitored data conforms to
this requirement.

If your monitored data differs very significantly from the
Exponential requirement, it may be more prudent to resort
to an event-based simulator e.g., SimPy [3], which is able to
accommodate a broader class of probability distributions.
The trade off is that this takes longer to set up and debug
(all simulation is about programming), and it takes longer to
validate that your simulation results are statistically valid.

Another aspect that often bothers people about any kind
of prediction is the errors introduced by the modeling as-
sumptions. While it is true that modeling assumptions do
introduce systematic errors into predictions and all PDQ re-
sults should really be presented as a range of plausible values
with their attendant errors, what is often not appreciated is
that everything that is quantified introduces errors; includ-
ing monitored data. Contrary to popular opinion, data is
not divine. Do you know the error range on your data?

Since all PDQ performance inputs and outputs are av-
erages, it is important to ensure that monitored data also
represents reliable averages. One way to do this is with a
controlled load-test platform, like that in Section 6. Such a
platform is actually a workload simulator, and it is there-
fore important that all performance measurements be col-
lected in steady-state. A steady-state average throughput

Ramp up Steady-state Ramp down

A

Instantaneous throughput

- ___ SN __

Elapsed time

Figure 5: Steady-state throughput measurements

(i.e., A = X) for a given user load (N) is found by tak-
ing measurements over some lengthy measurement period T’
and eliminating any ramp-up or ramp-down periods from
the data. A nominal 7' might be on the order of 5 to 10
minutes, depending on the application.

Industry standard benchmarks, such as those designed by
SPEC (www.spec.org) and TPC (www.tpc.org), have a re-
quirement that all reported throughput results be measured
in steady state.

4 A Simple Queue in PDQ

The relationship between the grocery store scenario and
PDQ functions, is summarized in Table 2. This allows us to

Table 2: PDQ functions for Fig. 4

Physical Queue PDQ Function
Customers ~ Workload CreateOpen()
Cashier Service node CreateNode()
Accounting Service time SetDemand ()

construct a simple model of a grocery store checkout (Figs. 3
and 4) expressed in the Perl variant of PDQ:

#! /usr/bin/perl

groxq.pl

use pdq;

INPUTS
$ArrivalRate = 3/4; # customers per second
$ServiceRate = 1.0; # customers per second
$SeviceTime = 1/$ServiceRate;

$ServerName = "Cashier";

$Workload = "Customers";

PDQ Model

Initialize PDQ intermal variables
pdq: :Init("Grocery Store Checkout");

Change the units used by PDQ::Report()
pdq: :SetWUnit ("Cust");
pdq: :SetTUnit ("Sec");

Create the PDQ service node (Cashier)

For brevity, we only show the output portion of the generic
PDQ report for this model.

skokok sk ok sk ok sk sk ok sk ok sk ok sk sk ok sk ok sk ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok
*x%kkx Pretty Damn Quick REPORT skkxk
srokokoskokskoksk sk ksk ok sk sk sk ok sk sk sk sk ok sk sk skok sk sk ok ok ok
#x* of : Sun Feb 4 17:25:39 2007
*** for: Grocery Store Checkout

Ver: PDQ Analyzer v3.0 111904
sk sk ok ok ok ok ok o oK ok Kok oK ok ok ok oK ok ok K ok ok sk ok ok oK ok ok

kK k
koK ok

kK% kK%

*okokok ok ok RESOURCE Performance Fokok Kk ok
Metric Resource Work Value Unit
Throughput Cashier Customers 0.7500 Cust/Sec
Utilization Cashier Customers 75.0000 Percent
Queue Length Cashier Customers 3.0000 Cust
Residence Time Cashier Customers 4.0000 Sec

The computed PDQ values are identical to the theoretical
predictions for throughput (X = \), utilization (p), queue
length (@), and residence time (R).

With these fundamental queueing concepts in place, and
PDQ as the tool to remove the drudgery of calculation,
we can easily apply them to predicting the performance of
individual hardware resources such as the CPU run-queue
(see Chap. 4 of [5]) or a disk device driver, and so on.
Most queueing theory books provide examples at this level.
More important for predicting the performance real com-
puter systems, however, is the ability to represent the work-
flow between multiple queueing facilities (resources). In
other words, the interaction between requests made concur-
rently at processors, disks, and network, for example. We

$pdq::nodes = pdq::CreateNode($ServerName, $pdq::CEN, $pdq::FCFaw explain how to do this with PDQ'

Create the PDQ workload with arrival rate
$pdq: :streams = pdq::CreateOpen($Workload, $ArrivalRate);

Define service rate per customer at the cashier
pdq: :SetDemand ($ServerName, $Workload, $SeviceTime);

OUTPUTS
Solve the PDQ model

pdq: :Solve($pdq: : CANON) ;

pdq: :Report(); # Generate a full PDQ report

In the above PDQ code, we have as input values for the
arrival rate (A) and the service time (S), respectively:

A=3/4 (4)
S=1.0 (5)
Using metric relation (2), the cashier utilization is given by:
3x1
= 6
. (6)
Similarly, using metric relations (1) and (2), the residence
time output is given by:
B 1.0
S 1-2x10

p =0.75,

R = 4.0 seconds,

(7)

which states that the time spent at the checkout stand is

equivalent to four average service periods, when the cashier

is 75% busy. The corresponding average queue length is:
3

4x4.0

Q= = 3.0 customers (8)

5 Circuits of Queues

Requests that flow from one queue to another correspond
to a circuit or network of queues. (Fig. 6) When only the

—{IO-IIO-II0—

Figure 6: An open circuit involving three queueing stages

arrival rate (A) of the requests, rather than the number of
requesters is monitored, Fig. 6 is called an open circuit. An
example of a non-computer situation that might be modeled
by the open circuit in Fig. 6, is boarding an aircraft. The
three stages are: waiting at the gate, queueing the jetway to
get onto the aircraft, and finally queueing in the cabin aisle
while passengers ahead of you get seated.

The average response time (R) is given by the total time
spent in each queueing stage or the sum of the three resi-
dence times. In the computer performance context, Fig. 6
could be applied to a 3-tier web application where only the
rate at which HT'TP requests is known.

Another form of queueing circuit involves a finite number
(N) of customers or requests. This is precisely the situation

created by a load-test platform. A finite number of client
load generators issue requests into the test rig, and no addi-
tional requests can enter from outside the isolated system.
Open source load and stress test tools can be found at http:
//www.opensourcetesting.org/performance.php. More-
over, there is a kind of feedback mechanism in operation in
that no more than one request can be outstanding at a time.
In other words, each script running on a load generator (e.g.,
a client PC) does not issue the next request until the previ-
ous one has completed. In queueing theory parlance, this is
known as a closed queueing circuit.

Q] e

Requests l [Responses

-

Web Server App Server DBMS Server

Figure 7: An closed circuit involving three queueing stages
together with a special waiting stage (top) corresponding to
N client-side load generators with average think time Z

6 e-Commerce Application in PDQ

In this section, we show how the closed circuit PDQ model
in Fig. 7 can be applied to predicting the throughput perfor-
mance of the 3-tier e-commerce architecture shown in Fig. 8.
Due to financial and other constraints, the application is of-
ten load-tested on a miniature rendition of the production
environment, prior to full deployment. In the case consid-
ered here, each tier was represented by a single server. Such
a test rig can provide an excellent platform for generating
steady-state performance measurements which are useful for
parameterizing a PDQ model.

The throughput is measured as HTTP Gets per second
(GPS), and the corresponding response time performance
is measured in seconds (s). Due to space limitations, we
focus exclusively on modeling throughput performance. The
interested reader can find the details of modeling response
times in Ref. [5].

For this example, the key load-test measurements are
summarized in Table 3. Unfortunately, the data are not pre-
sented in equal user-load increments, which is less than ideal
for proper performance analysis but not a show-stopper.

Both X and R are system metrics reported from the
client-side. The utilization was obtained separately from
performance monitors on each of the local servers.

The monitored utilizations (p) and throughputs (X) in
Table 3 can be used together with a rearranged version of
equation (3):

p
SZY’ (9)

— =

Load
Balancer

Disk Array

Load
Drivers

Web
Servers

Database
Server

Application
Cluster

Figure 8: Multitier e-commerce application environment

Table 3: Measured performance data on each tier

N X R Pws Pas Pdb
(Clients) (GPS) (s) %) (%) (%)
1 24 0.039 21 8 4
2 48 0.039 41 13)
4 85 0.044 74 20 5
7 100 0.067 95 23 5
10 99 0.099 96 22 6
20 94 0.210 97 22 6

to calculate the corresponding service times for each tier.
The service times for each load are summarized in Table 4
together with the summary average on the last line of the
table.

Table 4: Service times derived from Table 3

N Sws Sas Sdb
1 0.0088 0.0021 0.0019
2 0.0085 0.0033 0.0012
4 0.0087 0.0045 0.0007
7 0.0095 0.0034 0.0005
10 0.0097 0.0022 0.0006
20 0.0103 0.0010 0.0006
Avg 0.0093 0.0028 0.0009

In the next section, we show how the average of the de-
rived service times (last row in Table 4) can be used to
parameterize the PDQ model.

7 Naive PDQ Model

As a first attempt to model the performance characteristics
of Fig. 7, we simply represent each application server as a
separate PDQ node using the averaged service times from
Table 4. In Perl PDQ, the parameterization of the queueing
nodes is coded as follows:

pdq: :Init($model) ;
$pdq: :streams = pdq::CreateClosed($work, $pdq::TERM, $users,
$think) ;

Create a queue for each of the three tiers
$pdq: :nodes = pdq::CreateNode($nodel, $pdq::CEN, $pdq::FCFS);

$pdq: :nodes =
$pdq: :nodes

pdq: :CreateNode ($node2, $pdq::CEN, $pdq::FCFS);
pdq: :CreateNode ($node3, $pdq::CEN, $pdq::FCFS);

Timebase is seconds expressed as milliseconds
pdq: :SetDemand ($nodel, $work, 9.3 * 1le-3);
pdq: :SetDemand ($node2, $work, 2.8 * 1le-3);
pdq: :SetDemand ($node3, $work, 0.9 * le-3);

A plot the predicted throughput in Fig. 9 shows that the
naive PDQ model has a throughput which saturates too
quickly when compared with the test rig data. However,
PDQ also tells us that, given the measured service times
in Table 4, the best possible throughput for this system is
about 100 GPS. This is due to the bottleneck resource (the
queue with the longest average service time), which is the
front-end web server. It constrains the throughput in such
a way that the maximum throughput:

1
max(Sws, Sass Sdb)
1
0.0093
= 107.53 GPS

Xmaac =

(10)
is reached near the optimal load point (Table 1):

* Sws+Sas+Sdb+Z
N =
max(Sws; Sas, Sab)
~0.0093 + 0.0028 4 0.0009 + 0.0
N 0.0093
= 1.40 clients

(11)

not 20 clients. If the service times change in the future, e.g.,

130

120
110
100 S 5
.90
Z g °
é_ 70
g 60
£ 50 o
= 40
30 Xpdq
20 o o Xdat
10
0 .
0 2 4 6 8 10 12 14 16 18 20
Clients (N)

Figure 9: Naive PDQ model of throughput

due to a new code release for the application, the bottleneck
resource may change and the PDQ model will be able to

predict its effect on throughput and response times.
Clearly then, it is also desirable to model the overall data

set better than the naive PDQ model has achieved, so far.

One simple method to offset this rapid saturation in the

%Houghput is to introduce a nonzero value to the think-time
> 0:

$think = 28.0 * le-3; # free parameter
pdq: :Init($model) ;

$pdq: :streams = pdq::CreateClosed($work, $pdq::TERM, $users,
$think) ;

This has the effect of slowing down the issuing of new requests into the
system. In this sense, we are playing with the think-time as if is a free
parameter. The non-zero Z = 0.028 seconds disagrees with the settings
in the actual load test scripts, but it can give some perspective on how

far away we are from finding an improved PDQ model. As Fig. 10
130
120 -
110 1
100 1 o
_ 90|
Z 8o °
E_ 70 -
%’ 60 -
£ 50
= 404
30 1
201 o Xdat
107 Xpdg
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
0 2 4 6 8 10 12 14 16 18 20

Clients (N)

Figure 10: Throughput model with nonzero think-time

shows, this nonzero think-time improves the throughput profile quite
dramatically.

~0.0093 + 0.0028 + 0.0009 + 0.028
N 0.0093

= 4.41 clients

N*

(12)

This trick with the think time tells us that there are additional
latencies not accounted for in the load test measurements. The effect
of the nonzero think-time is to add latency and to make the round trip
time of a request longer than anticipated. This also has the effect of
reducing the throughput at low loads. But the think-time was set to
zero in the actual measurements. How can this paradox be resolved?

8 Including Hidden Latencies

The next trick is to add dummy nodes to the PDQ model in Fig. 11.
There are, however, constraints that must be satisfied by the service
demands of these virtual nodes. The service demand of each dummy
node must be chosen in such a way that it does not exceed the service
demand of the bottleneck node. In addition, the number of dummy

5]

Requests l [‘
O

N clients
Z=0ms

Responses

-

Web Server

App Server DBMS Server

Dummy Servers

Figure 11: Hidden latencies modeled as dummy nodes

nodes must be chosen such that the sum of their respective service
demands does not exceed Rpin = R(1) when there is no contention,

i.e., for a single request. It turns out that we can satisfy all these con-
straints if we introduce 12 uniform dummy nodes, each with a service
demand of 2.2 ms. The change to the relevant PDQ code fragment is:

use constant MAXDUMMIES => 12;

$think = 0.0 * 1e-3; # same as in test rig
$dtime = 2.2 x 1le-3; # dummy service time

Create dummy nodes with their service times ...
for ($i = 0; $i < MAXDUMMIES; $i++) {

$dnode = "Dummy" . ($i < 10 ? "O$i" : "$i");

$pdq: :nodes = pdq::CreateNode($dnode, $pdq::CEN, $pdq::FCFS);

pdq: :SetDemand ($dnode, $work, $dtime);

Notice that the think-time is now set back to zero. The re-
sults of this change to the PD(Q model are shown in Figs. 12.
The throughput profile still maintains a good fit at low loads
(N < N*) where:

~0.0093 + 0.0028 + 0.0009 + 12(0.0022)

N 0.0093

= 4.24 clients (13)

but needs improvement above N*.

140

t20{ 7
100 ° °
3
o
5 80
Qo
<
E3
3 604
=
=
40 4 —o— Xdat
Xpdq
20 1 ———-UxB
———-5xB
0 : : :
0 2 4 6 8 10 12 14 16 18 20
Clients (N)

Figure 12: Throughput with Z = 0 and dummy nodes

9 Load-dependent Server

Certain aspects of the physical system were not measured,
and this makes PDQ model validation difficult. So far, we
have tried adjusting the workload intensity with a nonzero
think-time. Setting Z = 0.028 seconds removed the rapid
saturation but is inconsistent with Z = 0 seconds used for
the actual test measurements.

Introducing the dummy queueing nodes into the PDQ
model improved the low-load model, but it does not accom-
modate the throughput roll-off observed in the data. To
model this effect, we replace the web-server node in with
a load-dependent node. The general theory behind load-
dependent servers is discussed in reference [5]. Here, we
adopt a slightly simpler approach. The service time (Sys)
in Table 4 indicates that it is not constant across all client
loads. We need a way to express this variability. If we plot
the monitored data for S,,s, we can do a statistical regres-
sion fit like that shown in Fig. 13. The resulting power-law
equation is given by:

Dys(N) = 8.0000 N0-9850 (14)

10.5
10 "
//
—
el =
c =
5]
£ 95
g P y = 8.3437x°%%
3 P R?=0.8745
s 9 //
% / o Data_Dws
o
0/ 8.0 NN0.085}
854 / — ———Power (Data_Dws)
/
/
i
8 w ‘ ‘
0 5 10 15 20
Clients (N)

Figure 13: Regression fit of web server times

which parameterizes nodel of the PDQ model as:

pdq: :SetDemand($nodel, $work, 8.0 * 1le-3 * ($users *x 0.085));

The customized output of the complete PDQ model (see
listing in Section 13) is:

Xdat
24
48
85
100
99
94

QO NPBNRPL=

1
2

Xpdq D=12
26.25

47.41

77.42

98.09

101.71

96.90

which shows good agreement with the measured data for
D =12 dummy PDQ nodes.

The impact on the throughput model can be gauged from
Fig. 14. The curve labeled Xpdq2 is the predicted over-

130

*********]
120 A e
S e
110 , .
by // o o
— 90 A / .
S / 0.
— 801 >
3 ®
a 70)
'gv !/
3 60 ,
= 50
" / o Xdat
= 401
"""" Xpdq1
) ———-UXB
o ———-SXB
10 e
0 | ‘
0 2 4 6 8 10 12 14 16 o -

Clients (N)

Figure 14: Model of load-dependent throughput

driven throughput based on the load-dependent server for
web front-end and the predictions fit well within the error
margins of the measured data.

In this case, there is little virtue in using PDQ to project
beyond the measured load of N = 20 clients because the
throughput is not only saturated, it is also retrograde. How-
ever, now that a PDQ model has been constructed and vali-
dated against test data, it can be used to address any num-
ber of what if scenarios.

10 Going Further with PDQ

The previous example is already very sophisticated and sim-
ilar PDQ models usually cover most needs. There are sit-
uations, however, where more detailed models are needed.
Two examples that can arise are: multiple servers and mul-
tiple workloads.

10.1 Multiple servers

A non-computer situation that might be modeled by the
multiple server queue in Fig. 15, is waiting in line at a bank
or post office. In the computer performance context, Fig. 15

Figure 15: PDQ model of multiserver queue

could be used as a simple model of a symmetric multipro-
cessor. See Chapter 7 of reference [5] for more on this topic.

The response time in (1) is replaced by:

(15)

where p = AS and m is the integral number of servers.
Technically, this is an approximation but a good one. The
exact solution is more complex and can be found using the
following algorithm in Perl:

#! /usr/bin/perl
erlang.pl

Input parameters
$servers = 8;
$erlangs = 4;
if ($erlangs > $servers) {
print "Error: Erlangs exceeds servers\n";

exit;
}
$rho = $erlangs / $servers;
$erlangB = $erlangs / (1 + $erlangs);
for ($m = 2; $m <= $servers; $m++) {

$eb = $erlangB;

$erlangB = $eb * $erlangs / ($m + ($eb * $erlangs));
}
Output results
$erlangC = $erlangB / (1 - $rho + ($rho * $erlangB));
$normdwtE = $erlangC / ($servers * (1 - $rho));
$normdrtE = 1 + $normdwtE; # Exact
$normdrtA = 1 / (1 - $rhox*$servers); # Approx

This is precisely the queueing model developed by Erlang
100 years ago, that we discussed in Section 2. In that case,
each server represented a trunk telephone line.

10.2 Multiple Workloads

In reality it is common for a single resource, like a database
server, to handle a multitude of transaction types. For ex-
ample, purchasing an airline ticket or a hotel room on the
web may involve up to half a dozen different transactions
before the ticket or room is finally issued. This kind of sit-
uation can be modeled in PDQ as follows.

Consider the simpler case of three different transaction
types labeled by the colors red, green and blue. Each of these
colored workloads may a access a common resource e.g., a
database server. In the queueing paradigm (Fig. 16), each

Figure 16: PDQ model of a multiple workloads queue

of these colored workloads is distinguished by their different
service time requirements when they get serviced. In other
words, the red work takes a red service period, the green
work takes a green service period, and so on. Each color has
its own arrival rate as well.

Assuming these service times are quite different from each
other (otherwise why bother making any distinction?), the
real impact occurs in the waiting line because when say a
red request arrives into the queue, it’s response time will
be determined not by the number of requests ahead of it
(which is only true for a “monochromatic” workload), but
the particular combination of colors ahead of it. In PDQ,
Fig. 16 might be represented as follows:

$pdq: :nodes = pdq::CreateNode("DBserver", $pdq::CEN, $pdq::FCFS);

$pdq: : streams
$pdq: :streams
$pdq: :streams

pdq: :CreateOpen("Red", $ArrivalsRed);
pdq: :CreateOpen("Grn", $ArrivalsGrn);
pdq: :CreateOpen("Blu", $ArrivalsBlu);

pdq: :SetDemand ("DBserver", "Red", $ServiceRed);
pdq: :SetDemand ("DBserver", "Grn", $ServiceGrn);
pdq: :SetDemand ("DBserver", "Blu", $ServiceBlu);

Naturally, the PDQ report generated by multiple workloads
will be more complicated because of all the possible inter-
actions.

This just gives some idea of the ways in which PDQ can
be extended to reflect more realistic computer architectures.
Further discussion of these matters would take us too far
afield, but the interested reader can find more details in my
book [5].

11 Guidelines for Applying PDQ

Performance modeling of any type is part science and part
art. It is therefore, impossible to provide a complete set of
rules or algorithms that will furnish the correct model. In
fact, as shown here, the process is one of iterative improve-
ment. The best guide is experience, and experience comes
from simply doing it repeatedly.

In that vein, here are some guidelines that might be of
help when you are trying to construct PDQ models.

Keep it simple: A PDQ model should be as simple as pos-
sible, but no simpler! It is almost axiomatic that the
more you know about a system architecture, the more
detail you will try to throw into the PDQ model; in-
cluding the kitchen sink.

More like the map than the metro: A PDQ model is
to a computer system as a subway map is to the actual
subway system. A subway map is an abstraction that
has very little to do with the physical subway system.
It encodes only sufficient detail to enable you to transit
from point A to point B. It does not include a lot of
irrelevant details such as altitude of the stations, or even
their actual geographical proximity. A PDQ model is a
similar kind of abstraction.

The big picture: Unlike most aspects of computer tech-
nology, which require you to absorb large amounts of
minute detail, PDQ modeling is all about deciding how
much detail can be ignored!

Seek the principle of operation: If you cannot describe
the principle of operation in 25 words or less, you prob-
ably do not understand it well enough to start con-
structing a PDQ model. The principle of operation
for a time-share computer system, for example, can be
stated as: Time-share gives every user the illusion that
they are the ONLY user active on the system. All the
hundreds of lines of code in Linux to implement time-
slicing, priority queues, etc., are there merely to support
this illusion.

Guilt is golden: PDQ modeling is also about spreading
the guilt around. You, as the performance analyst, only
have to shine the light on the performance problem,
then stand back while others flock to fix it.

Where to start? Have some fun with blocks; functional
blocks! One place to start constructing a PDQ model is
by drawing a functional block diagram. The objective is
to identify where time is spent at each stage in process-
ing the workload of interest. Ultimately, each functional
block gets converted to a queueing subsystem. This in-
cludes the ability to distinguish sequential and parallel
processing. Other diagrammatic techniques e.g., UML
diagrams, may also be useful.

Inputs and outputs: When defining PDQ models, it
helps to write down a list of inputs; measurements or
estimates that are used to parameterize the model, and
outputs; numbers that are generated by calculating the
model. See Section 4.

No Service, no queues: You know the restaurant rule:
“No shoes, no service!” Well, this is the PDQ mod-
eling rule: no service, no queues. In your PDQ models,
there is no point creating more queueing nodes than
those for which you have measured service times. If the

measurements of the real system do not include the ser-
vice time for a PDQ node that you think ought to be
in your model, then that PDQ node cannot be defined.

Estimating service times: Service times are notoriously
difficult to measure directly. Often, however, the service
time can be calculated from other performance metrics
that are easier to monitor. See Table 4.

Change the data: If the measurements do not support
your PDQ performance model, more than likely, the
measurements need to be redone.

Closed or open queue? When trying to figure out which
queueing model to apply, ask yourself whether or not
you have a finite number of requests to service. If the
answer is yes (as it should be for a load-test platform),
then it is a closed queueing model. Otherwise use an
open queueing model. See Section 5.

Steady-state measurements: The steady-state measure-
ment period should on the order of 100 times larger than
the largest service time. See Section 3.

Which timebase?: Use the timebase of your measurement
tools. If the tool reports in seconds, use seconds, if it
reports in microseconds, use microseconds. If there are
multiple monitoring sources of data, then ALL numbers
should be normalized to the same units before doing any
calculations.

Workloads come in threes: In a mixed workload model
(multiclass streams in PDQ), avoid using more than
three concurrent work streams whenever possible.
Apart from generating a PDQ report that is unwieldy
to read, generally you are only interested in the inter-
action of two workloads, i.e., a pairwise comparison.
Everything else goes in the third workload (AKA “the
background”). If you cannot see how to do this, you
are probably not ready to create the PDQ model.

12 Conclusion

Performance modeling is a demanding discipline which can
best be conquered through persistent practice. Most of the
effort goes into constructing and validating the model of
your particular environment and applications. Once the
PDQ model is validated, however, it is not necessary to keep
reconstructing it. In general, it will only need to be tweaked
to reflect performance changes occasioned by hardware up-
grades and new software releases.

The e-commerce application modeled in Section 6 pro-
vides a good starting point which can be extended to in-
clude multiple servers and additional workloads. One of the
remarkable outcomes of that PDQ model is that it allowed
us to “see” effects (hidden latencies) that were not explicitly
captured in the monitored data. But, perhaps a more sig-
nificant result of using PDQ is not performance models, per
se. Rather, the process of using PDQ provides an organiza-
tional framework within which all performance data, from
monitoring to prediction, can be properly comprehended.

References

[1] Kenneth “Monitoring Linux performance with
Orca,” http://www.linux-magazine.com/issue/65/
Linux_Performance Monitoring With_Orca.pdf

Hess,

[2] R: Open source statistical
r-project.org

[3] SimPy: Open source simulator written in python, http://
sourceforge.net/projects/simpy/

analysis package, http://www.

[4] N. J. Gunther, Guerrilla Capacity Planning, Springer-Verlag,
2007

[5] N. J. Gunther, Analyzing Computer System Performance with
Perl::PDQ, Springer-Verlag, 2005

[6] PDQ download, http://www.perfdynamics.com/Tools/PDQcode.
html

13 Listing for e-Commerce Model

#! /usr/bin/perl
ebiz_final.pl

use pdq;
use constant MAXDUMMIES => 12;

Hash AV pairs: (load in vusers, thruput in gets/sec)

%tpdata = ((1,24), (2,48), (4,85), (7,100), (10,99),
Q@vusers = keys(/tpdata);

$model = "e-Commerce Final Model";

$work = "ebiz-tx";

$nodel = "WebServer";

$node2 = "AppServer";

$node3 = "DBMServer";

$think = 0.0 * 1le-3; # same as in test rig

$dtime = 2.2 x 1e-3; # dummy service time

Header for custom report

(www.perfdynamics.com) in 1994. Prior to that, Dr. Gun-
ther applied his training in theoretical physics to research
and management positions at San Jose State University,
JPL/NASA (Voyager and Galileo missions), Xerox PARC
and Pyramid/Siemens Technology. Performance Dynamics
has recently embarked on joint research into Quantum Infor-
mation Technology. Dr. Gunther is a member of the AMS,
APS, ACM, CMG, IEEE, and INFORMS.

(20,94));

printf ("%2s\t%4s\t%4s\tD=Y2d\n", "N", "Xdat", "Xpdq", MAXDUMMIES);

foreach $users (sort {$a <=> $b} @vusers) {
pdq: :Init($model) ;

$pdq: :streams = pdq::CreateClosed($work, $pdq::TERM, S$users,

$think) ;

$pdq: :nodes = pdq::CreateNode($nodel, $pdq::CEN, $pdq::FCFS);

$pdq: :nodes
$pdq: :nodes

Timebase in seconds expressed as milliseconds

pdq: :CreateNode ($node2, $pdq::CEN, $pdq::FCFS);
pdq: :CreateNode ($node3, $pdq::CEN, $pdq::FCFS);

pdq: :SetDemand($nodel, $work, 8.0 * 1e-3 * ($users *x 0.085));

pdq: :SetDemand ($node2, $work, 2.8 * le-3);
pdq: :SetDemand ($node3, $work, 0.9 * le-3);

Create dummy nodes with their service times ...
for ($i = 0; $i < MAXDUMMIES; $i++) {

$dnode = "Dummy" ($i < 10 7 "0O$i" : "$i");

$pdq: :nodes = pdq::CreateNode($dnode, $pdq::CEN, $pdq::FCFS);

pdq: :SetDemand ($dnode, $work, $dtime);
}

pdq: :Solve($pdq: :EXACT) ;

printf ("%2d\t%2d\t%4.2f\n", $users, $tpdata{$users},
pdq: :GetThruput ($pdq: : TERM, $work));

14 Author

Neil Gunther, M.Sc., Ph.D. is an internationally recognized
consultant who founded Performance Dynamics Company

10

