
Understanding Load Averages and Stretch Factors

Neil J. Gunther

Abstract

No doubt you have often seen and even made use of those
three little numbers called “load averages” that appear in
shell commands like procinfo and uptime. But how well
do you understand them? Why are there always three num-
bers? How are they calculated? And what is their origin? As
well as answering these questions in the following, the con-
cept of stretch factor is introduced as a way to enhance
load average data for improved performance management of
symmetric multiprocessor and multicore servers.

1 Introduction

Most Linux system administrators are familiar with those
three little numbers that appear in shell commands like
procinfo, uptime, top, and remote host ruptime. For ex-
ample, uptime emits:

9:40am up 9 days, load average: 0.02, 0.01, 0.00

Note that the load average metrics are not available in their
own right. Rather, they are always included within the out-
put of other commands. While the load average is a well-
known to Linux system administrators, its meaning is often
rather poorly understood.

To start with, even the word “load” means different things
to different people. To a system administrator it tends to
imply the number of active users on a server, whereas to a
performance analyst it tends to imply the utilization of the
server. The man page for the uptime states:

uptime gives a one line display of ... the

system load averages for the past 1, 5, and 15

minutes.

which does explain why there are three numbers, but does
not explain what the word load means in this context. The
man page for procinfo states:

The average number of jobs running, followed

by the number of runnable processes and ...

For somewhat deeper explanations, we can turn to experts [1]
who warn us:

The load average tries to measure the number of active
processes at any time. As a measure of CPU utiliza-
tion, the load average is simplistic, poorly defined, but
far from useless.

That’s encouraging (Not!). As you will find out, the load average
is a “poor” measure of processor utilization precisely because it
is not a measure of CPU utilization.

So, load is somehow related to active processes, but what is
an “average” load? Our experts [1] sometimes answer a question
with a question:

What’s high? As usual, that depends on your system.
Ideally, you’d like a load average under, say, 3,
Ultimately, “high” means high enough so that you don’t
need uptime to tell you that the system is overloaded.

Huh? Why a load average less than 3? They continue:

...different systems will behave differently under the
same load average. . . .running a single CPU-bound
background job...can bring response to a crawl even
though the load average remains quite low.

Somewhat surprisingly, we shall find out in the next section that
this last statement is absolutely correct!

Figure 1: Periodically sampled load averages presented as a
time series during a 1-week window. The 1-, 5-, and 15-minute
values appear as superimposed green, blue, and red curves

Modern graphical tools, like Orca [2], can provide a much
broader perspective on load averages by representing them as
a time series (Fig. 1). Blair Zajac, author of Orca points out:

If long term trends indicate increasing figures, more
or faster CPUs will eventually be necessary unless load
can be displaced. For ideal utilization of your CPU, the
maximum value here should be equal to the number of
CPUs in the box.

This statement certainly recognizes that the run-queue might be
serviced by multiple processors. Unfortunately, it also suggests
that any form of queueing (i.e., waiting) is a bad thing. As we
shall see in Section 5, nothing could be further from the truth. No
waiting might be desirable for a number-crunching application
(see Sect. 5.2), but for commercial workloads some amount of
queueing is both expected and desirable (see Sect. 5.1). Afterall,
that’s the reason Linux has a run-queue in the first place.

We are getting nowhere fast this way. To clarify things further,
I performed a set of controlled experiments on a single-processor
Linux box.

2 Controlled Experiments

Experimental load averages were sampled over a one-hour period
(3600 seconds) on an otherwise quiescent single-CPU Linux box.
The tests consisted of two phases:

1

1. Two CPU-intensive jobs were initiated as background pro-
cesses and allowed to execute for 2,100 seconds.

2. These two processes were stopped simultaneously but load
average measurements were continued for another 1,500 sec-
onds.

The following Perl script was used to sample the load average
every 5 seconds using the uptime command.

#! /usr/bin/perl -w
$sample_interval = 5; # seconds

Fire up background cpu-intensive tasks ...
system("./burncpu &");
system("./burncpu &");

Perpetually monitor the load average via uptime
and emit it as tab-separated fields for possible
use in a spreadsheet program.
while (1) {

@uptime = split (/ /, ‘uptime‘);
foreach $up (@uptime) {

collect the timestamp
if ($up =~ m/(\d\d:\d\d:\d\d)/) {

print "$1\t";
}
collect the three load metrics
if ($up =~ m/(\d{1,}\.\d\d)/) {

print "$1\t";
}

}
print "\n";
sleep ($sample_interval);

}

A C program called burncpu.c was designed to waste CPU
cycles. Output from top shows the two instances of burncpu
ranked as highest CPU consumers during measurement pe-
riod when getload was running.

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

20048 neil 25 0 256 256 212 R 30.6 0.0 0:32 0 burncpu

20046 neil 25 0 256 256 212 R 29.3 0.0 0:32 0 burncpu

15709 mir 24 0 9656 9656 4168 R 25.6 1.8 45:32 0 kscience.kss

1248 root 15 0 66092 10M 1024 S 9.5 2.1 368:25 0 X

20057 neil 16 0 1068 1068 808 R 2.3 0.2 0:01 0 top

1567 mir 15 0 39228 38M 14260 S 1.3 7.6 40:10 0 mozilla-bin

1408 mir 15 0 340 296 216 S 0.7 0.0 50:33 0 autorun

1397 mir 15 0 2800 1548 960 S 0.1 0.3 1:57 0 kdeinit

20044 neil 15 0 1516 1516 1284 S 0.1 0.2 0:00 0 perl

1 root 15 0 156 128 100 S 0.0 0.0 0:04 0 init

Figure 2 shows that the 1-minute load average reaches a
value of 2.0 after 300 s into the test, the 5-minute load av-
erage reaches 2.0 around 1,200 seconds, while the 15-minute
load average would reach 2.0 at approximately 4,500 seconds
but the processes were killed at 2100 seconds.

Readers with a background in electrical engineering will
immediately spot the striking resemblance between the data
in Figure 2 and the voltage curves produced by charging and
discharging an RC-circuit. We shall learn why this analogy
is more than mere whimsy in Section 4. Notice that the
maximum load during the test is equivalent to the number
of CPU-intensive processes running at the time of the mea-
surements. The “fins” in the top curve are a result of various
demons waking up temporarily and then going back to sleep.
They can be considered noise in the experimental setup. By
the way, if there was just a single process running, the load
average would not be greater than 1.0 and you might be
forgiven for drawing the wrong conclusion that load average
is a direct measure of CPU utilization. I say this because I
made this mistake in one experiment.

My next objective was to explain why the load average
data from these experiments exhibit the characteristics seen
in Figure 2. For that, I needed to explore the Linux kernel

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500 3000 3500 4000
Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_1

LAD_1
LAD_5

LAD_15
LAD_15

LAD_5

Figure 2: Load average data (LAD) collected on a controlled
Linux platform during a 1 hour period. LAD 1, LAD 5, LAD 15
signify the 1-, 5-, and 15-minute metrics, respectively

code that calculates the load average metrics. I chose to
use the Linux 2.6.20.1 source code available online at http:
//lxr.linux.no/source/, complete with cross-referencing
hyperlinks, for easier navigation and enhanced readability.

3 Kernel Code

Looking at the source code for the CPU scheduler, we find
the following C function called calc load in http://lxr.
linux.no/source/kernel/timer.c.

1136 unsigned long avenrun[3];
1137
1138 EXPORT_SYMBOL(avenrun);
1139
1140 /*
1141 * calc_load - given tick count, update the avenrun load estimates.
1142 * This is called while holding a write_lock on xtime_lock.
1143 */
1144 static inline void calc_load(unsigned long ticks)
1145 {
1146 unsigned long active_tasks; /* fixed-point */
1147 static int count = LOAD_FREQ;
1148
1149 count -= ticks;
1150 if (unlikely(count < 0)) {
1151 active_tasks = count_active_tasks();
1152 do {
1153 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1154 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1155 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1156 count += LOAD_FREQ;
1157 } while (count < 0);
1158 }
1159 }

This is the primary routine that calculates the load average
metrics. Essentially, it checks to see if the sample period has
expired, resets the sampling counter, and calls the subrou-
tine CALC LOAD to calculate each of the 1-minute, 5-minute,
and 15-minute metrics respectively. The sampling interval
used for LOAD FREQ is 5*HZ. How long is that interval?

Every Linux platform has a clock implemented in hard-
ware. This hardware clock has a constant ticking rate by
which everything else in the system is synchronized. To
make this ticking rate known to the system, it sends an in-
terrupt to the kernel on every clock tick. The actual interval
between ticks differs depending on the type of platform, e.g.,

2

most Linux systems have the CPU tick interval set to 10 ms
of wall-clock time.

The specific definition of the tick rate is contained in a
constant labeled HZ that is maintained in a system-specific
header file called param.h. For the online Linux source code
we are using here, you can see the value is 100 for an In-
tel platform in lxr.linux.no/source/include/asm-i386/
param.h, and for a SPARC-based system in lxr.linux.
no/source/include/asm-sparc/param.h. However, it is
defined differently for a MIPS processor in lxr.linux.no/
source/include/asm-mips/param.h. The statement:

#define HZ 100

in the header file means that one second of wall-clock time
is divided into 100 ticks. In other words, we could say that a
clock interrupt occurs with a frequency of once every 100th
of a second, or 1 tick = 1 s/100 or 10 milliseconds. Con-
versely, the C macro at line 73:

#define CT_TO_SECS(x) ((x) / HZ)

is used to convert the number of ticks to seconds.
The constant labeled HZ should be read as the frequency

divisor and not literally as the SI unit of frequency cycles
per second, the latter actually having the symbol Hz. Thus,
5 * HZ means five times the value of the constant called HZ.
Furthermore, since HZ is equivalent to 100 ticks, 5×100 ticks
= 500 ticks, it follows that 500 ticks is the same as 500× 10
milliseconds or an interval of 5 s.

So, CALC LOAD is called once every 5 s, and not 5 times
per second as some people mistakenly think. Also, be careful
not to confuse this sampling period of 5 s with the reporting
periods of 1, 5, and 15 minutes.

The C macro CALC LOAD does the real work of calculating
the load average and it is defined in http://lxr.linux.
no/source/include/linux/sched.h of the following code
fragment:

98 /*
99 * These are the constant used to fake the fixed-point load-average
100 * counting. Some notes:
101 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
102 * a load-average precision of 10 bits integer + 11 bits fractional
103 * - if you want to count load-averages more often, you need more
104 * precision, or rounding will get you. With 2-second counting freq,
105 * the EXP_n values would be 1981, 2034 and 2043 if still using only
106 * 11 bit fractions.
107 */
108 extern unsigned long avenrun[]; /* Load averages */
109
110 #define FSHIFT 11 /* nr of bits of precision */
111 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
112 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
113 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
114 #define EXP_5 2014 /* 1/exp(5sec/5min) */
115 #define EXP_15 2037 /* 1/exp(5sec/15min) */
116
117 #define CALC_LOAD(load,exp,n) \
118 load *= exp; \
119 load += n*(FIXED_1-exp); \
120 load >>= FSHIFT;

Several questions immediately come to mind when reading
this code:

1. Where do those strange numbers 1884, 2014, 2037 come
from?

2. What role do they play in calculating the load averages?

3. What does the CALC LOAD code actually do?

I will address these questions in the next section. First, we
need to make a brief detour into the world of fixed-point
arithmetic.

The cryptic comment that precedes the CALC LOAD macro
alerts us to the fact that fixed-point, rather than floating-
point, arithmetic is used to calculate the load average. Since
the calculations are done in the kernel, the presumption is
that fixed-point arithmetic is more efficient, although no ex-
plicit justification is given.

A fixed-point representation means that only a fixed num-
ber of digits, either decimal or binary, are used to express
any number, including those that have a fractional part
(mantissa) following the decimal point. Suppose, for ex-
ample, that 4 bits of precision were allowed in the mantissa.
Then, numbers like:

0.1234, −12.3401, 1.2000, 1234.0001

can be represented exactly. On the other hand, numbers
like:

0.12346, −8.34051

cannot be represented exactly and would generally be
rounded to:

0.1235, −8.3405

As comment warns, too much successive rounding can
cause otherwise insignificant errors to become compounded
into significant errors. One way around this problem is to
increase the number of bits used to express the mantissa,
assuming enough storage is available to accommodate the
greater precision.

←10 bits→ ←− 11 bits −→
0000000001 . 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
Bit position: 10 9 8 7 6 5 4 3 2 1 0

Table 1: Bit positions for digits in 10.11 fixed-point format

The comment also indicates that there are 10 bits allowed
for the integer part of the number and 11 bits for the frac-
tional part. This is called an M.N = 10.11 format. The
rules of fixed-point addition are the same as for integers.
The important difference occurs with fixed-point multipli-
cation. The product of multiplying two M.N fixed-point
numbers is:

M.N ×M.N = (M + M).(N + N) (1)

To get back to M.N format, the lower-order bits are elimi-
nated by shifting N bits.

There are several fixed-point constants used in the
CALC LOAD routine. The first of these is the number ‘1’ it-
self, which is labeled FIXED 1 (see line 111). In Table 1, the
top row corresponds to FIXED 1 expressed in 10.11 format,
whereas the leading zeros and the decimal point have been
dropped from second row. The digits of the resulting binary
1000000000002 are indexed 0 through 11 on the last row of
Table 1. This establishes that FIXED 1 is equivalent to 211

or 204810 in decimal notation.

3

Using the C left-shift bitwise operator (<<),
1000000000002 can be written as 1 << 11 in agree-
ment with line 111 of the macro code. Alternatively, we
can write FIXED 1 as a decimal integer:

FIXED 1 = 204810 , (2)

to simplify calculation of the remaining constants: EXP 1,
EXP 5, and EXP 15, for the 1-, 5-, and 15 minute metrics,
respectively.

Consider the 1-minute metric as an example. If we denote
the sample period as σ and the reporting period as τ , then:

EXP 1 ≡ e−σ/τ . (3)

I have already established that σ = 5 seconds and for the
1-minute metric, τ = 60 second. Furthermore, the decimal
value of EXP 1 is:

e−5/60 = 0.92004441463 . (4)

To convert eqn.(4) to a 10.11 fixed-point fraction, we only
need to multiply it by the fixed-point constant FIXED 1 or
‘1’ to produce:

b2048× 0.92004441463c = 188410 , (5)

and round it to the nearest 11-bit integer.
Each of the other magic numbers can be calculated in the

same way, and the results are summarized in Table 2. The

Table 2: Default magic numbers for 5 second sampling
Base Sec. 1. exp(−5/τ) Rounded Binary
τ1 60 1884.25 188410 111010111002

τ5 300 2014.15 201410 111110111102

τ15 900 2036.65 203710 111111101012

results in Table 2 agree with the kernel defines:

#define EXP_1 1884

#define EXP_5 2014

#define EXP_15 2037

If the sampling rate was decreased to a 2 second inter-
val, the constants would need to be changed to those in
the fourth column of Table 3. This explains how the three

Table 3: Magic numbers for 2 second sampling
Base Sec. 1. exp(−2/τ) Rounded Binary
τ1 60 1980.86 198110 111101111012

τ5 300 2034.39 203410 111111100102

τ15 900 2043.45 204310 111111110112

magic numbers arise. Next, we need to understand what the
CALC LOAD function actually does with them.

4 Load Average Revealed

Mathematically, the CALC LOAD (see line 117) is equivalent
to taking the current value of the variable load and multi-
plying it by a factor called exp. This value of load is then

added to a term comprising the number of active processes
n multiplied by another variable called FIXED 1-exp. The
last line of the macro decimalizes the value of load.

We also know that the macro variable exp is equivalent to
e−σ/τ by virtue of equation (3) and FIXED 1-exp is equiva-
lent to 1− e−σ/τ by virtue of equations (2) and (3). Writing
CALC LOAD macro in more conventional mathematical nota-
tion produces:

L(t) = L(t− 1) e−σ/τ + n(t) (1− e−σ/τ) (6)

where L(t) is the current value of the load variable, L(t−1)
is its value from the previous sample, and n(t) is number of
currently active Linux processes.

A Linux process can be in one of about half a dozen
states (depending on how you count) of which running,
runnable (R in the ps command), and sleeping (S in
ps) are the three primary states. A nice animation of
these states and the possible transitions between them can
be found at http://www.linux-tutorial.info/modules.
php?name=Tutorial&pageid=84. Each load-average metric
is based on the total number of processes that are:

1. runnable and waiting in the scheduler run-queue

2. currently running or exectuting on a processor

This accounts for the cryptic remark about “active pro-
cesses” made by our experts in Section 1. In queueing theory
terminology, the total active processes is called a queue [3].
It literally means, not just those processes that are in the
waiting line (the so-called run-queue), but also those that
are currently being serviced (i.e., running).

So, CALC LOAD is the fixed-point arithmetic version of
equation (6). How equation (6) behaves is best understood
by examining some special cases.

4.1 Empty Run-Queue

First, consider the case where the process run-queue is
empty, i.e., n(t) = 0. Recall from Section 1 that the run-
queue includes not just those Linux processes that are wait-
ing in the run-queue (runnable), but also those currently
executing (running) on CPUs.

Setting n(t) = 0 in eqn.(6) produces:

L(t) = L(t− 1) e−σ/τ (7)

If we iterate eqn.(7) between t = t0 and t = T we get:

L(T) = L(t0) e−σt/τ (8)

A plot of equation (8) is shown in Figure 3 for the three
load average reporting metrics (τ). It corresponds to time-
dependent exponential decay.

In other words, it is this load average calculation that
corresponds to the fall-off in the observed load between
t0 = 2, 100 and T = 3, 600 in Figure 3, which compares the
data from Figure 2 (labeled LAD) with the curve produced
by equation (8) labeled EMA.

4

4.2 Full Run-Queue

The second special case corresponds to Section 2 with the
run-queue is consistently occupied by two processes. The
second term in equation (6) now dominates, and iterating
from time t = t0 to time t = T produces:

L(T) = 2 L(t0) (1− e−σt/τ) (9)

Similarly, a plot of equation (9) is shown in Figure 4 for
the three load average reporting metrics (τ) tracks the data
(labeled LAD) as a monotonically increasing functions.

We see that equation (9) is responsible for the observed
rise in load between t0 = 0 and T = 2, 100 in Fig. 2.

Table 4: Calculated rise times for the data in Fig. 4
Load avg. Time Estimated
parameter constant rise time (s)

τ1 60 300
τ5 300 1500
τ15 900 4500

Having already noted earlier that the curves in Figure 2
resemble the voltage characteristic of an RC-circuit, we can
take that analogy a step further. In circuit theory, it is
known that the rise time is approximately 5 times the char-
acteristic time constant τ . In CALC LOAD, τ1 = 60 seconds,

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600
Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

EMA_15

EMA_1

EMA_5

LAD_15

LAD_1
LAD_5

Figure 3: Comparison of load average data (LAD) with equa-
tion (8) (EMA) for 600 seconds after process termination in
Figure 2

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600
Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_5

LAD_15

LAD_1

EMA_1

EMA_5

EMA_15

Figure 4: Comparison of load average data (LAD)
with equation (9) (EMA) during the measurement period
0 ≤ T ≤ 600 seconds in Figure 2

therefore the rise time can be estimated as 5 τ1 ≈ 300 sec-
onds; exactly as observed in Figure 4. The other rise times
are summarized in Table 4.

It turns out that there is nothing particularly novel about
the way the load average is calculated. In fact, a common
technique for processing highly variable raw data for subse-
quent analysis, is to apply some kind of smoothing function
to that data. The general relationship between the raw in-
put data and the smoothed output data is given by:

Y (t)︸︷︷︸
smoothed

= Y (t− 1) + α︸︷︷︸
constant

X(t)︸︷︷︸
raw

−Y (t− 1)

 (10)

The smoothing function in equation (10) is an exponen-
tial filter or exponentially-smoothed moving average (EMA)
of the type used in financial forecasting (see e.g., http://
bigcharts.marketwatch.com) and signal processing. The
parameter α in equation (10) is commonly called the smooth-
ing constant, while (1 − α) is called the damping factor.
Moreover, both these factors can be directly related to the
corresponding factors in equation (6) [3]. The magnitude
of the smoothing coefficient (0 ≤ α ≤ 1) determines how
much the current forecast must be corrected for error in the
previous iteration of the forecast.

Table 5: Damping factors for CALC LOAD
Timebase Damping Smoothing
parameter factor e−σ/τ constant α

τ1 0.9200 0.0800 (≈ 8%)
τ5 0.9835 0.0165 (≈ 2%)
τ15 0.9945 0.0055 (≈ 1%)

Notice that the exponential damping factor for τ1 in Ta-
ble 5 agrees with the value in equation (4) to four deci-
mal places. The 1-minute load average metric has the least
damping, or about 8% correction, because it is the most re-
sponsive to instantaneous changes in the length of the run-
queue. Conversely, the 15-minute load average has the most
damping, or only 1% correction, because it is the least re-
sponsive metric.

5 Stretch Factors

Inevitably, the question arises: What is a good load aver-
age? A simple question; there should be a simple answer,
right? The expert comment in Section 1 about an ideal load
average of “3” notwithstanding, one could legitimately won-
der if a rule-of-thumb could be constructed for quantitatively
assessing the load average on multicore and multiprocessor
platforms? Moreover, since we now know that the load av-
erage is an exponentially damped moving average of activity
in the process run-queue, we could convert the question to,
How long should my queue be?

As with all seemingly benign performance questions, they
just look simple. In fact, the question about ideal load aver-
age values is ill-posed. Unfortunately, it is like asking, How
long is a piece of string? A slightly cynical answer is, not

5

so long that you strangle yourself with unintended conse-
quences. Similarly with queues. Queues should not be so
long that they introduce unintended consequences. What
might those consequences be?

Long queues correspond to long response times, so it’s re-
ally the response time metric that should get your attention.
One consequence is that a long queue cause ”poor response
times”, but that depends on what poor means. In most per-
formance management tools, there is a disconnect between
the measured run-queue length and the user-perceived re-
sponse times. Another problem is that queue length is an
absolute measure, whereas what is really needed is a rela-
tive performance measure. Even the words, poor and good
are relative terms. Such a relative metric is called the stretch
factor [4], and it measures the mean queue length relative
to the mean number of requests already in service. It is ex-
pressed in multiples of service units. A stretch factor of one,
means no waiting time is involved.

What makes the stretch factor really useful is that it can
easily be compared with service level targets. Service targets
are usually expressed in certain types of business units, e.g.,
quotes per hour is a common business unit of work for an
insurance industry. The expected service level is called the
service level objective or SLO, and is expressed as multiples
of the relevant service unit. An SLO might be documented
as:

The average user response time is not to exceed 15
service units between the peak operating hours of
10 am and 2 pm.

Which is the same as saying the SLO shall not exceed a
stretch factor of 15.

Table 6: Stretch factor definitions
m number of processors or cores
Q measured load average
ρ measured processor utilization

Using the symbols defined in Table 6, the stretch factor f
can be calculated as the ratio:

f =
Q

mρ
(11)

From the controlled experiments of Section 2, we know that
m = 1 because it was a single-process box, Q = 2 for the
1-minute load average, and ρ = 1 because the workload was
CPU-bound. Substituting these values into equation (11)
gives a stretch factor of f = 2. This result tells us that
the expected time for any process to complete execution is
two service periods. Notice that we don’t have to know
what is the actual service period. The stretch factor and
the load average happen to be identical in this case, because
the processes are running on a single processor and they are
CPU-intensive.

Let’s look at a couple of real-world examples to see how
this stretch factor concept can be applied.

5.1 Anti-spam Farm

All major email hosting services run spam analyzers. A
typical configuration might consist of a set of specialized
servers, each raking over email text using a filtering tool like
SpamAssassin (http://spamassassin.apache.org/). One
such well-known, and therefore heavily trafficed web portal,
has a battery of some 100 servers, each comprising 2 dual-
cores, all performing 7 by 24 email scanning. Typical daily
spam-filtering statistics are shown in Table 7.

Table 7: Daily Spam Server Statistics
Number of CPUs 4
Spam detected 33901
Ham accepted 23123
Emails processed 57024
Emails per hour 2376
Per CPU/hour 594
CPU busy% 99
Secs per email 6
Load average 97.36

A load balancer was used to distribute work into the server
farm. The effectiveness of the load balancer was monitored
using 1-minute load averages. The sample of these load
averages from 50 of the servers is shown in Figure 5 reveals
an imbalance of work in the farm.

Monitored Spam Farm Activity

0 20 40 60 80 100 120

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

S
e
r
v
e
r

Load average

Figure 5: Measured load averages showing the unbalanced
work distribution across a sample of 50 spam-farm servers

Some system administration questions include:

1. Why is there a load imbalance?

2. Are most servers overdriven as a consequence of the
load imbalance?

3. Is a load average of Q = 97.36 emails desirable?

4. What should be the actual server performance?

5. How many additional servers will be needed in the next
fiscal year to maintain current scanning performance at
higher loads?

6

Let’s substitute the load average into equation (11) to
calculate the stretch factor:

f =
97.36

4× 0.99
= 24.59 (12)

From Table 7, the average time to scan an email message
(S) is 6 seconds. So, a stretch factor of f = 25 service
periods implies that it takes about 25× 6 = 150 seconds or
2.5 minutes from the time an email message reaches the
portal until it lands in the intended user’s email box.

An absolute value of Q = 97.36 for the load average tells
us very little. The relative stretch factor, however, tells us
how many service periods the spam filtering is costing. The
answer to question 3, about desirablity, then depends on the
agreed upon service targets. At least now, such questions
can be addressed quantitatively instead of speculatively.

PDQ in Python

PDQ (Pretty Damn Quick) is a modeling tool for ana-
lyzing the performance characteristics of computational
resources e.g., processors disks, and a set of processes
that make requests for those resources. A PDQ model
is analyzed using algorithms based on queueing theory.
The current release facilitates building and analyzing
performance models in C, Perl, python, Java and PHP.

The python PDQ functions and procedures used in this
section are:

• pdq.Init() initializes internal PDQ variables.

• pdq.CreateOpen() creates a workload.

• pdq.CreateNode() creates a server.

• pdq.SetDemand() sets the workload service time on
the server resource.

• pdq.Solve() calculates performance metrics.

• pdq.Report() generates a generic performance re-
port.

More information about the PDQ library can found at:
www.perfdynamics.com/Tools

• Overview ../PDQ.html

• Download ../PDQcode.html

• Manual ../PDQman.html

PDQ is maintained by the author and Peter Harding.

We can also use the data in Table 7 to answer question 4
with a performance prediction tool like PDQ [3]. Presenting
PDQ in detail here would take us too far afield, but the
interested reader can see the sidebar PDQ in Python and
reference [4] to learn more. Here is that spam-server model
in PyDQ (PDQ in python):

#!/usr/bin/env python
import pdq

Measured performance parameters
cpusPerServer = 4
emailThruput = 2376 # emails per hour
scannerTime = 6.0 # seconds per email

pdq.Init("Spam Farm Model")
Timebase is SECONDS ...
nstreams = pdq.CreateOpen("Email", float(emailThruput)/3600)
nnodes = pdq.CreateNode("spamCan", int(cpusPerServer), pdq.MSQ)
pdq.SetDemand("spamCan", "Email", scannerTime)
pdq.Solve(pdq.CANON)
pdq.Report()

Running this PDQ model produces a report which contains
the following section:

****** SYSTEM Performance *******

Metric Value Unit
------ ----- ----
Workload: "Email"
Number in system 100.7726 Trans
Mean throughput 0.6600 Trans/Sec
Response time 152.6858 Sec
Stretch factor 25.4476

The stretch factor predicted by PDQ is a little bigger than
we calculated using equation (12). Why is that? To answer
this question, we need to look at the section of the PDQ
report that presents server performance information.

****** RESOURCE Performance *******

Metric Resource Work Value Unit
------ -------- ---- ----- ----
Throughput spamCan Email 0.0660 Trans/Sec
Utilization spamCan Email 99.0000 Percent
Queue length spamCan Email 100.7726 Trans
Waiting line spamCan Email 96.8126 Trans
Waiting time spamCan Email 146.6858 Sec
Residence time spamCan Email 152.6858 Sec

Given the rate at which work is arriving (2376 emails per
hour), each CPU should be 99% busy. This utilization is
higher than seen in the actual spam farm because of the
load imbalance. PDQ is assuming ideal load balance across
all servers, so more work is getting done. The predicted load
average (Queue length metric in the PDQ report) is closer
to 100 emails, and therefore, the predicted stretch factor of
25.45 is a little larger than the calculated value of 24.59.

Question 5 asks about the future. Either stretch-factor
value was considered to be borderline acceptable under peak
load conditions. Since all the servers are close to saturated,
one recourse is to upgrade with faster CPUS or, more likely,
procure new 4-way servers to handle the expected additional
work. PDQ helps to size the number of new servers based
on current and expected stretch factors.

Clearly, it is the stretch factor ratio that provides a more
meaningful indicator for performance management than the
absolute load average by itself.

5.2 Number Cruncher
Let’s return to the remark in Section 1 made in the context
of the Orca tool. We can use a similar PyDQ model to
see what it means to have no waiting line with all the CPUs
busy. In this case, each Linux process that takes 10 hours to
complete because it is transforming oil-exploration data for
further analysis by geophysicists. Here is the corresponding
PyDQ model:

#!/usr/bin/env python
import pdq

processors = 4 # Same as spam farm example

7

arrivalRate = 0.099 # Jobs per hour (very low arrivals)
crunchTime = 10.0 # Hours (very long service time)

pdq.Init("ORCA LA Model")
s = pdq.CreateOpen("Crunch", arrivalRate)
n = pdq.CreateNode("HPCnode", int(processors), pdq.MSQ)
pdq.SetDemand("HPCnode", "Crunch", crunchTime)
pdq.SetWUnit("Jobs")
pdq.SetTUnit("Hour")
pdq.Solve(pdq.CANON)
pdq.Report()

The corresponding PDQ Report contains the following out-
put:

****** RESOURCE Performance *******

Metric Resource Work Value Unit
------ -------- ---- ----- ----
Throughput HPCnode Crunch 0.0990 Jobs/Hour
Utilization HPCnode Crunch 24.7500 Percent
Queue length HPCnode Crunch 0.9965 Jobs
Waiting line HPCnode Crunch 0.0065 Jobs
Waiting time HPCnode Crunch 0.0656 Hour
Residence time HPCnode Crunch 10.0656 Hour

The waiting line is essentially zero length and all 4 CPUs
are busy, though only 25% utilized. How can this be? If
we were to look at the CPU statistics while the system was
running, we would observe that each CPU was actually 100%
busy. To understand what PDQ is telling us, we need to look
at the System Performance section of the PDQ report:

****** SYSTEM Performance *******

Metric Value Unit
------ ----- ----
Workload: "Crunch"
Number in system 0.9965 Jobs
Mean throughput 0.0990 Jobs/Hour
Response time 10.0656 Hour
Stretch factor 1.0066

The stretch factor is 1 (service period) because there is no
waiting line. On the other hand, it takes 10 hrs for each job
to get through the system, so the response time is about 10
hours.

The reason this appears a little odd is due to the fact that
PDQ makes predictions based on steady state behavior, i.e.,
how the system looks in the long run [3, 4]. With a service
time of 10 hours, we really need to observe the system for
much longer than that to see what it looks like in steady
state. Much longer here, means on the order of 100 hours
or longer. We don’t actually need to do that, but PDQ is
telling us how things would look if we did. In such a long
measurement period, we would not see any new arrivals.

Since the average service period is relatively large, the re-
quest rate is correspondingly small, so that no waiting line
forms. This, in turn, means that the processor utilization
25% is also low—in in the long view. Looking at the system
for just a few minutes while it is crunching 10 hours worth of
oil-exploration data, corresponds to an instantaneous snap-
shot of the system, not the steady-state view.

Like the controlled experiments in Section 2, both stretch-
factor examples involved CPU-bound workloads to more
clearly reveal the relationships between the performance
metrics. I/O-bound workloads (either disk or network) will
tend to exhibit smaller load averages than CPU-bound work
if those processes become suspended or sleep waiting on data
(Sect. 4). In that state they are neither runnable nor run-
ning and therefore do not contribute to n(t) in equation (6).
Conversely, when the Linux I/O driver is performing work,

it runs in kernel mode on a CPU and does contribute to
n(t).

Returning to the original question about rules-of-thumb
for load averages, which opened this section, we see that
since Q measures the total number of requests; both waiting
and in service. It not a very meaningful quantity because it
is an absolute value. Combining it, however, with the num-
ber of configured processors (m) and their average measured
utilization (ρ), the stretch factor f provides a better per-
formance management metric for symmetric multiprocessor
and multicore servers, because it is a relative performance
indicator which can be compared directly with established
SLOs.

6 Conclusion

The intent of the load average metrics is to provide infor-
mation about the trend in the growth of the length of the
run queue. That’s why it reports three metrics. Each tries
to capture historical trend information from the run-queue
as it was 1-, 5-, and 15-minutes ago.

Compared with today’s graphical data display capabilities
(Fig. 1), this approach to data representation looks antique.
In fact, the load average is one of the earliest forms of op-
erating system instrumentation; the lineage circa 1965 be-
ing CTSS → Multics → UNIX → Linux (see \url{www.
multicians.org/InstrumentationPaper.html} and [3]).
Based on these historical developments, each of the three
metrics is an exponentially weighted moving average (EMA)
of the sampled run-queue; a well-known algorithm for
smoothing data. The load average uses exponential smooth-
ing so that more weight is given to the most recent run-queue
samples, thereby avoiding outlier effects, as well as the need
to buffer sampled data in the kernel.

It is important to remember that I uncovered these de-
tails about the load average calculations by using controlled
measurements to generate Figure 2. One could never expect
to see such “charge-discharge” phenomena by merely star-
ing at a production time-series like Figure 1, no matter how
patient you are.

Finally, in Section 5, I presented the stretch factor as a
better way to make use of load average data for the perfor-
mance management of application service level targets on
multicore servers.

7 Author

Neil Gunther, M.Sc., Ph.D. is an internationally recognized
consultant who founded Performance Dynamics Company
in 1994. Prior to that, Dr. Gunther held research and man-
agement positions at San Jose State University, JPL/NASA,
Xerox PARC and Pyramid/Siemens Technology. Perfor-
mance Dynamics has also embarked on joint research into
Quantum Information Technology. Dr. Gunther is a mem-
ber of the AMS, APS, ACM, CMG, IEEE, and INFORMS.

8

References

[1] J. Peek, T. O’Reilly, and M. Loukides. UNIX Power
Tools. O’Reilly, Sebastopol, CA, 2nd edition, 1997.

[2] K. Hess. “Monitoring Linux Performance with
Orca”. http://www.linux-magazine.com/issue/
65/Linux Performance Monitoring With Orca.pdf,
2006.

[3] N. Gunther. Analyzing Computer System Performance
Using Perl::PDQ. Springer-Verlag, 2005.

[4] N. Gunther. “Berechenbare Performance”.
http://www.linux-magazin.de/technical review/
technical review 02 monitoring, 2007.

9

