
Seeing It All at Once with Barry†

Neil J. Gunthera and Mario François Jauvinb

Performance Dynamcis Company, Castro Valley, California, USAa

MFJ Associates, Ottawa, Ontario, Canadab

{njgunther@perfdynamics.com, mario@mfjassociates.net}

Improving data visualization paradigms for performance management is an or-
phaned area of tool development. Tool vendors avoid investing in development
if they see no demand, while capacity planners and performance analysts do not
demand what they have not conceived. We attempt to cut this Gordian knot with
’Barry’; a 3D performance visualization suite based on barycentric coordinates.
Potentially thousands of active processors, servers, network segments or applica-
tions can be viewed as a moving cloud of points that produces easily comprehended
visual patterns due to correlations in the workload dynamics. Barry provides an op-
timal impedance match between the measured computer system and the cognitive
computer system (your brain).

The purpose of computing is insight, not num-
bers. —Richard Hamming

1 INTRODUCTION

MacSpin [1] was a program written for the Macintosh
computer circa 1986, which facilitated using the mouse
as a means for orienting the apparent viewing angle of
multivariate data in 3-dimensions. One of the example
data sets was automobile engine attributes: MPG, dis-
placement, horsepower, weight, etc., represented as a
3-dimensional scatter plot. Any three engine-attributes
could be selected and their respective values defined on
the (x, y, z) axes. Each statistical sample, of which
there were perhaps 100, corresponded to a point in this
volume. The initial view of these data was in the 2-
dimensional (x, y)-plane and looked like a random scatter
plot.

However, using the mouse to swivel the orientation of
the axes or set them in constant rotation (hence the term
“spin”), caused data points along the z-axis to come into

† Copyright c© 2007 Gunther, Jauvin. All Rights Reserved.
This document may not be reproduced, in whole or in part, by any
means, without the express permission of the authors. Permission
has been granted to CMG, Inc. to publish in the Proceedings and
the associated CD. September 27, 2007

view and one was surprised to discover that these other-
wise random points actually lay in distinct parallel bands;
all of which had been superimposed in the (x, y)-view.
The meaning of the periodic bands notwithstanding, the
ability to uncover such hidden structure in the data by
the physical action of bringing the third dimension into
view, was a watershed moment in personal computing.

MacSpin was inspired by an earlier program called PRIM-
9 (Position Rotation Isolation Masking in 9-dimensions)
developed in 1973 on IBM 360 computers by a team
led by John Tukey [2, Ch. 14]. Tukey, a mathematical
statistician, is the father of “exploratory data analysis” or
what has become known as “information visualization”
(InfoViz). The concept of “spinning” data in 3D is now
de rigueur for statistical packages like SAS, S-Plus and
R, as well as mathematical software like Mathematica;
which we use here. Physicists took up the gauntlet and
developed “scientific visualization” (SciViz) during the
1990s (see Section 2.1). In our view, we are still wait-
ing for the wholesale application of similar techniques to
performance data and the purpose of this paper is to
present a coherent set of paradigms for “performance vi-
sualization” (PerfViz) based on barycentric coordinates
(defined in Sect. 4). It is our fervent hope that this
small contribution might spark more interest in creating
the next generation of PerfViz tools.

We take the position that the design of new PerfViz tools

should be firmly rooted in geometry. Based on our expe-
rience, certain visual properties emerge from the selected
geometry which then appear useful for PerfViz. At this
stage in our understanding it is only possible to speculate
as to why this particular choice of geometry carries the
attributes of good design, but even speculative state-
ments about PerfViz design represent an advance over
the informality of undirected experiment. With such de-
sign criteria in place, it then becomes possible to propose
enhancements for our performance monitor which draw
on more elaborate display technologies.

The concept of performance visualization is not new.
Similar terms have become common currency in the do-
mains of the performance analysis for parallel process-
ing and high performance computing (HPC), as well as
data networks [3]. Example project titles include: HPVC:
High Performance Visualization Center [4], Visualiza-
tion for Parallel Performance Evaluation and Optimiza-
tion [5], ParaGraph: A Performance Visualization Tool
for MPI [6]. The emphasis there, however, has been on
creating tools to help identify where higher degrees of
parallelism might be attained in scientific and engineer-
ing codes. Here, we are referring to the development
and application of any type of visual aids for general pur-
pose performance analysis and capacity planning. These
might also include some of the ideas that have arisen out
of the HPC community.

The reader might find the ideas presented here to be
most useful when it comes to the procurement of new
performance tools or the renewal of license fees for exist-
ing performance tools. It is then that a vendor is likely to
be most receptive to new ideas like those presented here.
In that way you might contribute to the improvement of
PerfViz.

2 BEST IMPEDANCE MATCH

At the outset it is important to emphasize that although
visualization techniques (some of which we are using to
construct this presentation) have become ubiquitous with
the advent of modern computing devices, knowing what
constitutes optimal visualization is a very deep problem;
primarily because we know so little about the workings of
the human visual system (Fig. 1). Trial and error is the
most common arbiter used to decide what constitutes
good or bad visualization. The goal of PerfViz is easy
to state but still difficult to implement. We seek the
best visual impedance match between the digital com-
puter being measured and the cognitive computer (the
visual system in our brain) which interprets those mea-

Figure 1: Human visual subsystems

surements. A good impedance match is one that allows
the brain to waste less energy deciphering a bad visualiza-
tion and expend more energy on solving the performance
problem at hand.

Certainly we do not understand all the neural circuitry
of the brain (which appears to be a very novel kind of
non-Von Neumann parallel distributed-computer), but
we do know quite a lot about certain pieces of the
brain’s neural circuitry and in particular the visual sys-
tem. The most recent research suggests that the retina
appears to form a sequence of movie-like frames (http:
//blip.tv/file/175244) containing data akin to col-
orized fourier transforms [7]. One dominant feature of
the brain in general, and the visual cortex in particular,
is that it is an excellent differential analyzer.

Figure 2: The apparent size of the moon is literally
computed by the circuits in your retina and visual cortex
and is therefore prone to errors known as optical illusions

For example, you may not realize it but, your brain actu-

2

ally computes things like size and color. Size computa-
tions you already know something about. Now that the
weather is improving, go outside some night with your
camera and wait for moonrise. The moon looks huge
near the horizon (Fig. 2) but smaller at its zenith. Take
a photo of the moon in the same angular positions and
you will see that it’s size remains invariant in the photo-
graph. How can that be? The usual answer is that it is
an optical illusion, but that doesn’t explain why.

The “illusion” occurs because your brain mis-computes
the size of the moon based on the size of objects within
your visual field. Your brain does comparisons (or dif-
ferential analysis) using the size of known objects near
the horizon together with the knowledge that the moon
is not nearby (you never touched the moon), and over-
estimates its size. Yes, your brain gets it wrong! At
its zenith, however, there are no familiar objects to bias
the sense of dimension, so your brain calculates the size
of the moon correctly (i.e., consistent with the photo-
graph).

The same thing applies to color. We do not see color, we
compute it! Even if our eyes are receiving the same 650
nanometer red photons from a red flower, we don’t see
the same color red. The perceived color is determined by
the color of the flowers surrounding the red flower we’re
looking at. The shade of red we see will be different
if the surrounding flowers are blue rather than yellow.
Moreover, things like contrast and edges are actually
computed in the retina of your eye prior to being received
by the visual cortex at the back of your head.

Wait a minute! We just pointed out that when it comes
to the size of the moon or the color of a flower, our cog-
nitive computer may get it wrong! And what about per-
formance analysis? That’s a more serious subject that
is supposed to be rational and accurate. How can we
live with cognitive miscalculations? Well, you live with
it every waking moment, and you seem to survive. The
possibility of getting it “wrong” stems from our cogni-
tive computer calculating differences rather than abso-
lutes [8]. Since we can’t change that, such cognitive rel-
ativity is a very important aspect of perception to keep in
mind when considering any PerfViz methods and tools.
Just because a particular visualization looks fancy does
not make it good because the brain is prone to illusion
and error. So, when we said earlier that the brain is an
excellent differential analyzer, we meant that it is much
more efficient at relative computations than an electronic
digital computer which operates on absolutes viz., num-
bers. What we need are PerfViz cues that present rela-
tive values to our cognitive computer with least error or
illusion.

2.1 The Tyranny of Dimensions

When dealing with the complex set of tuning parame-
ters in IBM’s WLM (Workload Manager) (www-03.ibm.
com/servers/eserver/zseries/zos/wlm/) in z/OS,
it has been suggested that it is relatively straightforward
for humans to visualize multiple dimensions1, provided
they are given the appropriate labels [9]. Conversely,
some of us have trouble finding our shoes in the morn-
ing. Nonetheless, we certainly are bound physically by 3
spatial-dimensions and 1 time-dimension, yet we some-
times need to comprehend more abstract kinds of data
that might become more comprehensible if we could ap-
peal to higher dimensional visualizations. Like WLM
tuning parameters, this need could hardly be more com-
pelling than it is for comprehending computer perfor-
mance data in general. Are there any role models that
we might appeal to? Indeed, there is. Physicists have
already attacked similar problems.

In the same way that physicists invented the World-Wide
Web to solve the very real problem of exchanging mas-
sive amounts of data collected from “atom smashing”
machines, they also recognized that all those desktop
CPU cycles with graphical user-interfaces could be ap-
plied to the visualization of, not just the complex physical
phenomena of particle physics, but also to comprehend-
ing the complex formation of tornadoes. This approach
now belongs to the subject of scientific visualization.

Prior to scientific visualization, physicists were left with
trying to comprehend the complex formation of torna-
does by numerically solving certain complicated differ-
ential equations. Without visualization tools, the solu-
tions remain a morass of calculated numbers. A pile
of computed numbers still has a very poor cognitive
impedance match because it are indistinguishable from
sampled statistical data or monitored performance data.
With the advent of scientific visualization, the pile of
calculated numbers can be rendered using colored an-
imation such that the physicist sees the subtle evolu-
tion of the tornado meso-cloud and so on. The big-
league version of this type of scientific visualization be-
longs to climate modeling, e.g., global warming, run-
ning on the Earth Simulator (www.es.jamstec.go.jp/
esc/eng/GC/index.html). But why should the physi-
cists, and the statisticians, for that matter, have all the
fun? As practicing performance analysts, we could gladly
use similar capabilities for visualizing a morass of perfor-
mance metrics.

All non-relativistic physics (e.g., tornadoes) takes place

1One has to be careful to distinguish physical dimensions
from degrees of freedom. See Sect. 6.

3

in (3 + 1)-dimensions: 3 space and 1 time. At high en-
ergies (e.g., cosmic rays), relativistic physics welds these
dimensions together in the 4-dimensions of Minkowski
space-time. There are some exotic proposals that all of
physics might become unified in 11-dimensional space-
time. But this is small potatoes when it comes to per-
formance analysis, almost all of which takes place in n-
dimensions where n is the number of independent per-
formance metrics. A typical unix or Windows operating
system samples on the order of n = 500 performance
metrics every second. Even using Design-Of-Experiment
techniques [10] to distill the most significant subset of
these metrics, the number is likely to far exceed the
(3+1) or 11 of physics. In this sense, the physicists have
lucked out. We performance analysts are stuck with try-
ing to represent a large number of performance metrics
on a 2-dimensional computer screen. This is the main
problem we address in this paper. Essentially, SciViz has
introduced animation (e.g., to encode time) and color
(e.g., to encode temperature) as the key new visualiza-
tion elements. In Sect. 6, we show how PerViz can also
employ those same elements.

2.2 Visualization Criteria

It is possible to compile a set of criteria which ought to
be met by any good PerfViz tools [11]:

1. Localized. Consumes the smallest possible area of
2-d screen real estate.

2. Dynamic. The ability to see temporal development
e.g., through animation.

3. Multi-parameter. Allow multiple performance pa-
rameters to be viewed simultaneously.

4. Patterns. Facilitates the easy recognition of pat-
terns and clustering in the data.

5. Cognition. Low cognitive overhead through the use
of visual cues.

6. Semantics. Universally understood semantics (semi-
otics?) for the visual representation.

7. Generality. The ability to apply the same paradigm
to different sets of performance parameters.

8. Journaling. Enables recording and redisplay of fil-
tered performance effects.

9. Personalization. Perception is subjective so I need
to be able to customize the visualization to suit my
particular cognitive computer.

Table 2 (last page) applies these criteria to some of the
PerfViz tools discussed subsequently in this paper. Cer-
tain paradigms, like parallel coordinates (Sect. 3.3), fail
to meet this minimal set. Conversely, barycentric coor-
dinates (Sect. 4) and treemaps (Sect. 3.4) fulfill more of
them.

Personalization is very important aspect of PerfViz be-
cause everyone’s brain is wired slightly differently. For ex-
ample, one of us (NJG) is color blind to certain shades of
green. We also need to distinguish clearly between what
is stylistic and what is principle. Many people are fond of
Edward Tufte’s books and presentations. Tufte can show
you what good graphics looks like (e.g., Napoleon’s ad-
vance and retreat on Moscow in 1812 [12, p. 41]) and
he can tell you what bad graphical habits are fostered
by PowerPoint (www.wired.com/wired/archive/11.
09/ppt2.html), but ultimately you need to understand
basic principles. In general, Tufte tends to offer more ex-
amples than scientific principles. Conversely, the math-
ematical statisticians [2, 13, 14, 15] have spent more
time and been more successful in developing principles
of PerfViz.

Having presented the general motivation for our work,
the remainder of this paper is organized as follows.
The next Section 3 provides a brief historical overview
of previous visualization schemes, some of which have
also been applied to PerfViz. Section 4 introduces the
barycentric coordinates which form the basis of our new
Barry-n tools that contract the visual representation of n
performance metrics into d = n− 1 spatial dimensions.
We refer to this collection of tools as the Barry007 suite.
Section 5 presents various applications including, visu-
alizing multiprocessor metrics and application response
times using Barry-3, as well as network performance in
Barry-4. In Section 6, we discuss some of the many po-
tential visual enhancements that could be applied to our
Barry007 prototypes. Conclusions and future work are
presented in Section 7.

3 PREVIOUS VISUALIZATION TOOLS

The n-dimensional performance metrics mentioned in
Sect. 2.1 can be associated with degrees of freedom in
the visual representation. The question becomes, how
to project them onto a 2-dimensional surface such as an
LCD display. From the earliest times, the 2-dimensional
representation of choice has been a simple tabular for-
mat using simple ASCII characters. The limit of this type
of 2-dimensional visualization is shown in Fig. 18, which
presents performance information for a 32-way multipro-

4

cessor. The data for each processor appears on a dif-
ferent line. Graphical 2-dimensional representations are
now more commonplace, and we now review some of
them.

3.1 Chernoff Faces

One approach makes use of a well-known feature of our
brains; our specialized circuits for recognizing human
faces. Since we can process facial information very effi-
ciently, it has been incorporated in Chernoff faces [14, 16]
like those shown in Fig. 3. Chernoff faces can be used for
any data having a large number of degrees of freedom.
Each parameter or variable is mapped to a facial attribute
such as the slope of an eyebrow, a smile or frown, and so
on. Although Chernoff faces are obviously applicable to
performance data, they do not seem to have been applied
in PerfViz tools.

Figure 3: Chernoff faces

Nonetheless, Chernoff faces represent a good impedance
match with our facial processing neurosystem and there-
fore helps us to spot visual anomalies very easily. One
limitation, however, is that the semantics of the facial
expressions is quite arbitrary and depends heavily on the
context. This is not necessarily a bad thing, but one
needs to have the context to know what the faces mean.

3.2 Kiviat Plots

A Kiviat plot (Fig. 4) is a graphical form based on polar
coordinates, in which variables are plotted on radial axes
at equal angular intervals [17]. The origin or zero lies at
the center of the plot and 1 or 100% lies at the circum-
ference. Kiviat graphs are also known as a “star plots”
or “star graphs” [14, p. 360] in an InfoViz context.

Figure 4: Kiviat plot

Broadly speaking, performance metrics can be classified
according to whether they exhibit a bigger is better prop-
erty, e.g., throughput, or a a shorter is superior property,
e.g., response time. On a Kiviat plot, these metrics are
arranged on alternating axes. Visual cueing comes from
the appearance of loosely defined symmetries and arbi-
trary geometrical (polygonal) shapes. Ideal shapes have a
high degree of symmetry, e.g., star shape, wedges, keels.
Although these shapes can be dynamic [5], the assign-
ment of metrics is rather arbitrary.

3.3 Parallel Coordinates

A completely different approach to compressing dimen-
sions uses Parallel Coordinates [18]. Consider a straight
line y = mx+c with slope m = −3 and intercept c = 20,
represented using standard orthogonal (x, y)-coordinates
in Fig. 5.

In order to represent y = −3x + 20 in parallel coordi-
nates, we first treat the line as a set of points (Fig. 5(a)).
The parallel coordinates labeled x1 and x2 in Fig. 5(b)
are usually spaced equidistant from each other at posi-
tions 0, 1, 2, We see that each point on the original
line now becomes a separate line in parallel coordinates.
These lines intersect at the point:(

1
1−m

,
c

1−m

)
or (0.25, 5.0), in this case. Clearly, your usual geometric
intuition goes out the window in a parallel coordinate
system.

5

(a) A Cartesian line as points

(b) Line in 2-d parallel coordinates

Figure 5: A line in parallel coordinates

Interestingly, parallel coordinates have been ap-
plied to a 5-dimensional subset of the same au-
tomobile data mentioned in Sect. 1 (See §5 in
http://www.galaxy.gmu.edu/stats/syllabi/
inft979/GeneralizedParallelCoordinates.pdf).
Figure 6 shows the points lying on the surface of a
3-dimensional sphere mapped onto 3 parallel coordinates
(X1, X2, X3). Unfortunately, this representation pro-
duces a rat’s nest of lines that corresponds to cognitive
noise. The poor visual impedance matching seems ob-
vious. Color is often used as a discriminator [19, Chap.
11]. This probably explains why parallel coordinates

Figure 6: A sphere in parallel coordinates

have not found widespread application.

3.4 Treemaps

Treemaps (www.cs.umd.edu/hcil/treemap/) are
space-constrained visualization of hierarchies that were
developed in 1991. Applications include the ability
organize the Google News news aggregator (Fig. 7) by
importance to the reader.

Figure 7: A treemap of Google News items

Several people have recognized treemaps as being use-
ful for visually representing the state of a large server
farm or an enterprise-wide collection of servers. For ex-
ample, treemaps have been used to display a large num-
ber of servers or workloads as color-coded rectangles,
where the size of each rectangle represents the capacity
rating of the server and a traffic-light color (e.g., red,
yellow, green) can represent its status or CPU utiliza-
tion [20, 21]. Potentially, treemaps can be used to group
and display all the servers in your enterprise. The rela-
tive merits of treemaps are compared with other tools in
Table 2.

4 BARYCENTRIC COORDINATES

Our goal is to find ways to represent n-dimensional per-
formance data (i.e., n performance metrics) in a d-
dimensional space, such that those data are rendered
with an optimal impedance match to the typical analyst’s
visual system. In this section, we show that barycentric
coordinates can fulfill this role.

6

4.1 Simplexes

A few weeks after this CMG conference has ended, most
of you will be busy wrapping Christmas gifts. The gifts
are generally 3-dimensional objects and the wrapping
paper is essentially 2-dimensional. To economize, you
would like to use the least amount of wrapping paper to
cover the gift. What you are doing, in fact, is computing
the convex hull, i.e., the minimal surface that encloses
all the vertices (points) of the gift you are wrapping.

1-Simplex
In[331]:= v3Point = 880, 0, 0<<;

In[341]:= Graphics3D@88PointSize@LargeD, Point@v3PointD<, 8Opacity@.5D, Sphere@v3Point, rD< ê. r Ø 1ê2<,
Axes Ø False, Boxed Ø FalseD

Out[341]=

»

2 -Simplex
In[324]:= v3Line = 880, 0, 0<, 80, 1, 0<<;

In[328]:= segLine = Line@v3LineD;

(a) Point, d = 0

In[342]:= Graphics3D@8Opacity@.5D, EdgeForm@BlackD, Thick, segLine,

Sphere@v3Line@@1DD, rD, Sphere@v3Line@@2DD, rD< ê. r Ø 1ê2, Axes Ø False, Boxed Ø FalseD

Out[342]=

3 -Simplex
In[321]:= v3TriEq = 881, 0, 0<, 80, Sqrt@3D, 0<, 8-1, 0, 0<<;

In[347]:= triEquilateral = 8Thick, Polygon@v3TriEqD<;

2 BarryBallz.nb

(b) Line, d = 1

In[348]:= Graphics3D@8Opacity@.5D, EdgeForm@BlackD, triEquilateral, Sphere@v3TriEq@@1DD, rD,
Sphere@v3TriEq@@2DD, rD, Sphere@v3TriEq@@3DD, rD< ê. r Ø 1, Axes Ø False, Boxed Ø FalseD

Out[348]=

4-Simplex

BarryBallz.nb 3

(c) Triangle, d = 2

In[354]:= Graphics3D@8Opacity@.5D, EdgeForm@BlackD, PolyhedronData@"Tetrahedron", "Faces"D,
Sphere@PolyhedronData@"Tetrahedron", "VertexCoordinates"D@@1DD, rD,
Sphere@PolyhedronData@"Tetrahedron", "VertexCoordinates"D@@2DD, rD,
Sphere@PolyhedronData@"Tetrahedron", "VertexCoordinates"D@@3DD, rD,
Sphere@PolyhedronData@"Tetrahedron", "VertexCoordinates"D@@4DD, rD< ê.
r Ø 1ê2, Axes Ø False, Boxed Ø FalseD

Out[354]=

4 BarryBallz.nb

(d) Tetrahedron, d = 3

Figure 8: Progression of d-simplexes formed by con-
necting the centers of close-packed spheres with line seg-
ments. This progression tell us the appropriate geometry
for barycentric coordinates in d-dimensions

Suppose now that you draw a set of dots on a piece of pa-
per. You next locate the outermost dots of the set, and
suppose further that there are just three of them. You
stick toothpicks in those three outer dots and enclose a
rubber-band around them. The rubber-band defines a
triangle (with 3 sides of arbitrary length). The triangle
forms another convex hull, this time in 2-dimensions. If
we rearrange the outer dots so that they form an equilat-
eral triangle (sides of equal length), then the convex hull
is called a simplex, because it is the “simplest” polytope
(many-sided figure) which encloses this 2-dimensional set
of dots.

Using the handy symbol Rd for a d-dimensional Euclidean
(flat) space, the 2-simplex in R2 for the rubber-band
example is an equilateral triangle, the 3-simplex in R3

for the gift-wrapping example is a tetrahedron, the 4-

simplex is a pentatope (whatever that looks like2), and so
on. Notice that the degree of the simplex is identical to
the Euclidean spatial dimension. This can be attributed
to the connection between simplexes and packed spheres
shown in Fig. 8.

How do simplexes help us with PerfViz? The answer is
that a d-simplex contains n = (d+1) degrees of freedom
(i.e., n performance metrics) represented as barycentric
coordinates; the simplex gives us the extra degree of free-
dom for free! Here is how it works. Consider a 2-simplex,
the equilateral triangle of height h = 1 drawn in the
(x, y)-plane (Fig. 9). The length of each side is 2/

√
3. If

we now draw a perpendicular line from each of the 3 faces
or sides, they will intersect at some point p interior to the
triangle. In Fig. 9(a) the distance to the point of inter-
section is given by the triple (0.6, 0.3, 0.1). These lengths
are the barycentric coordinates of that point. Note that
the sum of their respective lengths is also 1; same as the
height (h) of the triangle. Later, we shall refer to this
as the sum rule (See eqn.(5)). The impatient reader,
who is wondering where all this is going, is encouraged
to skip ahead to Fig. 17 which shows n = 4 performance
metrics for 1,000 items displayed in a 3-simplex. That is
the destination, but we need to get there in small steps.

We generalize as follows. A d-simplex has n = d + 1
faces. The corresponding n barycentric coordinates are
defined as the lines perpendicular to each face. If each
vertex V i, where i = 1, 2, 3, in Fig. 9(a) has Cartesian
coordinates (V ix, V iy), and the corresponding barycen-
tric coordinates have lengths a, b, c, then the Cartesian
coordinates of the point p are given by:

(px, py) = (aV 1x + bV 2x + cV 3x,

aV 1y + bV 2y + cV 3y) .
(1)

Consider the centroid in Fig. 9(b). Its barycentric coordi-
nates are (p1 = 1

3 , p2 = 1
3 , p3 = 1

3), so its corresponding
Cartesian coordinates are:

(p1V 1x + p2V 2x + p3V 3x, p1V 1y + p2V 2y + p3V 3y)

=
(

1
3

1√
3

+ 0 +
1
3

2√
3
,

1
3

+ 0 + 0
)

=
(

3
3
√

3
,

1
3

)
.

This simplifies to:

(px, py) =
(

1√
3
,

1
3

)
(2)

2It is not a triangular dipyramid i.e., 2 abutted
tetrahedra with 6 faces. See mathworld.wolfram.com/

TriangularDipyramid.html and Fig. 11.

7

p1

p3p2

p3=1/3

p1
=

1/
3

p2=1/3

p2

p3=0.3

p1
=

0.
6

p2=0.1

p1

p3

p2 p4

p3

p1

p2 p4

p3

p1

p2=.25,p4=.25,p3=.1,p1=.4

p2=.1,p4=.05,p3=.05,p1=.8

(a) Arbitrary point inside the convex hull of a 2-simplex
(h = 1) specified by three different barycentric coordinate
lengths, which correspond to an uneven distribution of weights
at each vertex

p1

p3p2

p3=1/3

p1
=

1/
3

p2=1/3

p2

p3=0.3

p1
=

0.
6

p2=0.1

p1

p3

p2 p4

p3

p1

p2 p4

p3

p1

p2=.25,p4=.25,p3=.1,p1=.4

p2=.1,p4=.05,p3=.05,p1=.8

(b) The interior point located at the centroid, which corresponds
to an even distribution of weights at each vertex making the
barycentric coordinates each one-third the height h = 1

Figure 9: Barycentric coordinates in R2

in agreement with (1) and Fig. 9(b).

Barycentric coordinates were discovered and named by
the German mathematician Franz Möbius in 1827. The
name comes from the way these coordinates define the
geometric barycenter or “center-of-mass” if weights were
attached to each vertex, as described in Fig. 9. More re-
cently, they have found application in fields as diverse as
computer graphics, representing Markov states in queue-
ing theory [22, p. 34] and Dalitz plots in high-energy
particle physics [23, p. 301]

Although it is straightforward to define a simplex, it is
not always easy to visualize them. Once again we find

ourselves trapped in 3-space (cf. Sect. 2.1). For PerfViz
applications, we require all the edges to be equilateral
and external to the convex hull. As Fig. 10 demonstrates,
this requirement cannot be met by any d > 3 simplex.
Be careful not confuse faces with edges. The number
of faces in a d-simplex is the same as the number of
vertices. The number of edges, however, is given by:

(d+1)C2 =
(d + 1)!

2!((d− 1)!

Only in the case of the 2-simplex are they the same. The
third diagram from left in Fig. 10 shows a 4-simplex rep-
resented in R2 by a fully-connected graph. Clearly, this
figure does not have a good visual impedance match for
n = 5 performance metrics. What about a 4-simplex in
higher-dimensional R3? Unfortunately, there is no such
representation.

Figure 10: The projection of higher order d-simplexes
(d = 2, 3, 4, 5, 6, 7) onto a 2-dimensional surface (e.g.,
this page or screen) demonstrates the increasingly poor
visual impedance match

To verify this, consider extending the tetrahedron
Fig. 8(d) as follows. We seek a fifth vertex such that
it is equidistant each of the other tetrahedron vertices.
Taking the three points at the base of the tetrahedron in
Fig. 8(d), which are already equidistant to one another,
we need to consider all possible locations in R3 where a
fifth point could be located equidistant from those three
vertices. There are only two possibilities, which are high-
lighted by the two large dots in Fig. 11. The lower dot
cannot satisfy the equidistance constraint because it is
further away from the top dot than any other vertex.
The large top dot also fails to comply because it is not
equidistant to the original top vertex; in fact, it is super-
imposed on that vertex. Therefore, there is no possible
fifth vertex in R3 equidistant from all other vertices. As-
suming that visualization in R3 has the best impedance
match, this result gives us a clear hint that the visual
impedance match of a 5-simplex is probably poor.

This discussion shows why a tetrahedron (3-simplex)
is the maximal geometric representation for visualizing
n = 4 performance metrics. As far as we know, this is
the first time that limitation has been formally identified.

8

In[242]:= ShowB
Graphics3DB:Opacity@.5D, EdgeForm@BlackD, PolyhedronData@"Tetrahedron", "Faces"D, Sphere@

thVertex@@1DD, rD, Sphere@thVertex@@2DD, rD, Sphere@thVertex@@3DD, rD, PointSize@0.05D,

PointB::0, 0, -
2

3
-

1

2 6

>, :0, 0,
2

3
-

1

2 6

>>F, Sphere@thVertex@@4DD, rD> ê. r Ø 1ê2F,

Graphics3D@8Dashed, Thickness@0.005D, Line@8invTetra@@1DD, invTetra@@2DD<D,
Line@8invTetra@@1DD, invTetra@@3DD<D, Line@8invTetra@@1DD, invTetra@@4DD<D<D,

Axes Ø False, Boxed Ø False, AxesLabel Ø 8"x", "y", "z"<
F

Out[242]=

BarryzBallzMario.nb 3

Figure 11: Attempt to represent a 4-simplex as a trian-
gular dipyramid

4.2 Barry-2 Axes in R1

If two parameters, p1 and p2, represent two independent
degrees of freedom, the appropriate geometrical repre-
sentation is a 2-dimensional coordinate system (x, y)
such that the location of a point in the (x, y)-plane is
given by the values p1 and p2. If, however, the values
of these parameters are restricted by barycentric the sum
rule:

p1 + p2 = 1 , (3)

then one degree of freedom is removed and the range of
parameter values can be represented on a 1-dimensional
unit line segment.

4.3 Barry-3 Axes in R2

Next, we show that the locus of a point in R2, defined
by barycentric coordinates, is bounded by an equilateral
triangle. Hereafter, we assume unit height for such a
triangle.

The location of any interior point is given by the distance
along the three limbs that are perpendicular to each side.
These limbs form the barycentric coordinates. Identifying
the length of each limb with the parameters: p1, p2 and
p3, the centroid corresponds to: p1 = p2 = p3 = 1/3.
For all interior points, the sum of these three distances
is equal to 1 such that:

p1 + p2 + p3 = 1 (4)

is the corresponding 3-parameter sum rule. The invariant
sum follows trivially from the way the three limbs parti-
tion the interior of the triangle in an area-invariant way.

In an InfoViz context, a Barry-3 data representation is
sometimes called a “triplot”, but should not be confused
with “trilinear graphs” [14, p. 423].

4.4 Barry-4 Axes in R3

The question arises, if a 3-parameter barycentric sum
rule is represented by an equilateral triangle (2-simplex),
what is appropriate geometrical representation for a 4-
parameter sum rule?

p1

p3p2

p3=1/3

p1
=

1/
3

p2=1/3

p2

p3=0.3

p1
=

0.
6

p2=0.1

p1

p3

p2 p4

p3

p1

p2 p4

p3

p1

p2=.25,p4=.25,p3=.1,p1=.4

p2=.1,p4=.05,p3=.05,p1=.8

(a) Single point located by the Barry-4 coordinates p1 = 0.4,
p2 = 0.25, p3 = 0.1, p4 = 0.25, which corresponds to an
uneven distribution of weights at each vertex

p1

p3p2

p3=1/3

p1
=

1/
3

p2=1/3

p2

p3=0.3

p1
=

0.
6

p2=0.1

p1

p3

p2 p4

p3

p1

p2 p4

p3

p1

p2=.25,p4=.25,p3=.1,p1=.4

p2=.1,p4=.05,p3=.05,p1=.8
(b) Single point located by the Barry-4 coordinates p1 = 0.8,
p2 = 0.1, p3 = 0.05, p4 = 0.05, which corresponds to a
different uneven distribution of weights at each vertex

Figure 12: Barycentric coordinates in R3

One might be tempted, at first, to conclude that the
appropriate choice is a square. But, from the discussion
about dimensional compression in Sect. 4.1, we can know
that (d + 1) performance parameters can be represented
by a d-dimensional simplex viz., a tetrahedron like that

9

in Fig. 12. In general, for n = (d + 1) parameters:

n∑
i

pi = 1 (5)

In principle, a total of (4 + 1)× 12 = 60 performance pa-
rameters could be displayed on a 2-dimensional screen.
Attempting to go beyond this level of dimensional com-
pression would us back to a state of visual overload,
which it has been our goal to avoid.

We now apply this conceptual framework to multiproces-
sor performance analysis.

5 APPLICATIONS

The first paper about the application of barycentric coor-
dinates to PerfViz [11] presented an ncurses implemen-
tation of Barry-3 along with several screen shots. In this
section, we apply the definitions developed in Sect. 4
to present a suite of new Barry visualizations (Barry-
1, Barry-2, Barry-3 and Barry-4) implemented in Java
and Mathematica, along with several new PerfViz ap-
plications for multiprocessors and multicores (Sect. 5.2),
application response times (Sect. 5.3) and network mon-
itoring (Sect. 5.4).

5.1 Barry-2 for Resource Monitoring

Barry-2 is equivalent to a line segment in R1 ; the triv-
ial 1-simplex in Fig. 8. The corresponding sum rule is
ρ + (1 − ρ) = 1 on R1. An alternative generalization
for including higher-dimensional data in R2 is an array
of line segments; also known as a table (cf. Fig.18). Ar-
rays of colored line segments have also been used e.g.,
MASF [24].

5.2 Barry-3 for Multiprocessor Metrics

Computer processor state can be expressed as three pa-
rameters:

1. Idle-time (i): The percentage of time the processor
spends either not executing any code or waiting for
something else to happen e.g., the completion of an
1/0 request.

2. User-time (u): The percentage of processor time
spent executing application code.

3. System-time (s): The percentage of processor time
spent executing code in the UNIX kernel (other than
Idle).

These three parameters obey a sum rule:

u + i + s = 1 (6)

so, it becomes possible to represent their values in
barycentric coordinates with axes denoted IDL, USR,
SYS in Fig. 13. There is also an additional degree of
freedom viz., real-time, which although not directly asso-
ciated with these geometrical considerations, can be in-
corporated by animating the barycentric display as noted
in Sect. 2.2.

Figure 13: The Barry1992 ASCII representation of CPU
utilization for an 8-way multiprocessor based on a Barry-3
axes

Referring to the elementary trigonometry in Fig. 14, we
have:

ux = u/
√

3 and sx = 2s/
√

3 (7)

which are the ordinate-offset of the CPU user-rime and
the abscissa-projection of CPU system-time, respectively.
Compare this with the general barycentric equation (1).

An arbitrary point on the screen (x, y) is given by:

(ux + sx, u) . (8)

Consequently, any algorithm for computing a screen po-
sition in barycentric coordinates only requires two of the
three performance parameters: user-time, system-time,
and idle-time. These two values, together with the ap-
propriate scaling factors for the aspect ratio of the par-
ticular screen, provide all the necessary input.

10

Figure 14: Mapping CPU-busy to Barry3 axes

All these performance attributes can be viewed simulta-
neously in 2D and more importantly, instantly compre-
hended. In addition to these three CPU performance
metrics, the Barry-3 display can be dynamic in the sense
of using animation to examine the temporal development
of processor performance (e.g., transient effects). Time
development can also be thought of as a sequence of
triangular time-slices laid out like the segments of To-
blerone chocolate bar.

5.3 Barry-3 for Application Response

Up to this point, we have considered only parametric per-
formance data. In this section we show how barycentric
coordinates can be applied to categorical performance
data.

The Apdex Alliance (www.apdex.org) has defined an
application performance index based on categorizing
response time measurements from a user perspective
(www.cmg.org/conference/cmg2006/mkt/apdex.
html). The Apdex satisfaction metric (AT) is a single
number normalized so that 0 < AT < 1. This unit
range can be further subdivided into a set of color-coded
Zones defined in Table 1.

Table 1: Definition of Apdex Zones

Rating Range
Excellent 0.94 ≤ AT ≤ 1.00

Good 0.85 ≤ AT < 0.94
Fair 0.70 ≤ AT < 0.85
Poor 0.50 ≤ AT < 0.70

The usual limitations of expressing performance as a sin-
gle notwithstanding, the Apdex metric also runs into the
same scalability limitations as discussed in Sect. 3 for
tabulated multiprocessor data in Fig. 18 (see last page).
This limitation is likely to be manifest in most commer-
cial data centers which typically support a large num-
ber of concurrent applications. We briefly indicate here
how this scalability problem can be ameliorated by apply-
ing barycentric coordinates to the underpinnings of the
Apdex index.

As part of the framework used to define the AT index, the
specification defines two threshold times T and F = 4T
to create three performance “zones” or categories:

Satisfied (S): Response times R that are short enough
to satisfy the user by falling within the interval
R ∈ [0 . . . T].

Tolerating (T): Responses that fall in the interval
R ∈ (T . . . F]. Application responses in this zone
are less than ideal but do not by themselves threaten
the usability of the application.

Frustrated (F): Response times longer than the sec-
ond threshold R > F such that a casual user is likely
to abandon a course of action and a production user
is likely to cancel a task.

The threshold F has been selected by the Apdex con-
sortium on the basis that users often perceive response
times to be far greater than the measured value. The
Apdex specification gives the following example:

If users perceive response time as tolerable be-
ginning at 4 seconds then they will be frus-
trated at greater than 16 seconds.

This criterion should be compared with the well-
documented device-independent limits (www.useit.
com/papers/responsetime.html):

T ≤ 0.1 seconds: User feels that the system is react-
ing instantaneously, and no special feedback is nec-
essary.

T ≤ 1.0 second: User’s flow of thought is maintained,
even though delay will be noticed.

T ≤ 10 seconds: User remains focused on the interac-
tivity. Feedback during delays is especially impor-
tant.

11

Figure 15: Apdex Zones (Table 1) superimposed onto
Barry-3 coordinates. Apdex indexes for web applications
measured at 5 different geographical locations are shown
as black dots. The main cluster of points at the top-
left each have high satisfaction values and near zero
frustration components. They therefore reside in the
Good to Excellent zones. Conversely, the outlier (center)
with Apdex index A4 = 0.58 and frustration component
F = 0.27 resides in the Poor zone

The Apdex specification requires at least 100 samples to
generate reasonable response time statistics. Denoting
the sample counts for the Apdex intervals as Cs, Ct and
Cf , we can normalize them as follows:

C = Cs + Ct + Cf

1 =
Cs

C
+

Ct

C
+

Cf

C
1 = s + t + f (9)

such that each of the ratios s, t, f are related by a sum
rule identical to (6).

These normalized response time data can be rendered
using the Barry3 diagram in Fig. 15. This is similar to
Fig. 13, but with the u, s, i axes relabeled by S, T, F .
Not only does Fig. 15 provide a way to address the scal-
ing problem of viewing possibly hundreds of applications
simultaneously, but a moving cloud of such points can
also show their time development. In other words, Barry-
3 for Apdex offers a visual representation of application
performance that makes it useful to both executive man-
agement (who want to know just one number, AT) and
to performance engineers (who want to know how AT is
comprised).

5.4 Barry-4 for Network Utilization

In the case of barry-4, any parametric performance vari-
ables where there is a sum rule relationship with four in-
dependent values is a great application for this 3D version
of the barry visualization suite. This specific instance of
the barry visualization arguably has the best impedance
match due to its familiar relationship to the R3 space we
live in.

(a) Unicast (b) Broadcast

(c) Multicast (d) Anycast

Figure 16: LAN segment addressing modes

A great application for this visualization is the different
types of addressing when considering segment utiliza-
tions in an IEEE 802.3x or Ethernet LAN segment. The
most common addressing modes in such environments
are:

Unicast: Traffic in which the destination IP address
refers to one specific host only. (Fig. 16(a))

Broadcast: Traffic in which the destination IP address
refers to a group of hosts in a network (network
broadcast) or subnet (subnet broadcast). All hosts
in the topology receive the traffic whether they want
it or need it or not. (Fig. 16(b))

Multicast: Traffic in which the destination IP address
refers to a group of hosts that have indicated an
interest for the traffic. This could mean all hosts on
a network or none. (Fig. 16(c))

Idle: The LAN segment is not transmitting any of the
above types of traffic.

Anycast (Fig. 16(d)) is a new type of addressing, with
rather limited applications, that has emerged and is not
usually of concern for the performance analyst. It is for

12

traffic in which the destination IP address refers to a
group of hosts but only the nearest host will receive the
data. The definition of nearest depends on the network
topology, the protocols used and the associated adminis-
trative policies. (See RFC 3330 www.rfc-editor.org/
rfc/rfc3330.txt). Such traffic is transmitted using
unicast addresses that are under the control of the ad-
ministrative group which has operational responsibilities.
Although we mention it for completeness, it does not
appear as an independent axis in Fig. 17.

(a) Default view looking “up” the Multicast axis

(b) Swiveled view looking “down” the Unicast axis

Figure 17: Two different Barry-4 views of 1,000 LAN
segments displaying network utilization for the unicast,
multicast, broadcast and idle modes defined in Fig. 16

Since the most common type of traffic is Unicast, we

have chosen to orient the default view so that metric
appears at the apex of the tetrahedron in Fig. 17; keeping
in mind that the Barry-4 tetrahedron can be swiveled to
any arbitrary orientation on the screen. Figure 17 depicts
a snapshot of network utilization data across 1,000 LAN
segments. As far as we are aware, there is nowhere else
can you display this amount of data in such a compact
form and still make sense of it; especially in currently
available commercial tools.

Fig. 17(a) clearly shows three distinct “clouds” of per-
formance data. The dark purple cloud (lower right) cor-
responds to a significant number of LAN segments expe-
riencing extremely heavy levels of broadcast traffic which
are consuming 60–85% of network bandwidth. This cor-
responds to a familiar horror story, affectionately referred
to as a “broadcast storm”, which used to occur fre-
quently in the late 1980s or early 1990s but is less likely
today because of better segmentation of networks and
subnetworks. It is also clear that a lot of segments that
are experiencing extremely high level (85–100%) of uni-
cast traffic (top apex). For example, these segments
could be involved with heavy video on-demand or file
sharing activities. Fig. 17(b) corresponds to Fig. 17(a)
rotated (“spun”) by about 90 degrees so the the Unicast
axis is now pointing out of the page towards the per-
son viewing. This view enables the analyst to appreciate
that the middle cloud (around 50% Unicast) is evenly
distributed along the Idle, Broadcast and Multicast axes.

6 VISUAL ENHANCEMENTS

If you walk along the beach at Coronado Bay in San
Diego, you kick up grains of sand as you go. Each
grain can be specified by 3-location numbers (x, y, z)
and 3-velocity numbers (vx, vy, vz). The flying grain
has 6 degrees of freedom in R3. The time dimension
is implicit. If, instead of flying sand, you throw a beach
ball, it rotates about it’s own axis as it travels. Ro-
tation or corkscrewing of the stripes on the beach-ball
requires another 6 independent numbers. These 12 de-
grees of freedom can also be regarded as 12 independent
dimensions in the statistical sense. We could also in-
clude other categorical degrees of freedom such as: color
of the stripes, plastic or rubber material, etc. As noted
in Sect. 2.1, since you (the reader) can easily visualize
this flying beach-ball in color, humans can effectively vi-
sualize in more than 3-dimensions [9]. The problem for
PerfViz is, how best to encode these higher dimensions.

Some proposed enhancements for the Barry007 suite in-
clude:

13

Swivel and Rotation: When viewing 3D tetrahedron
on a 2D screen, a lot of information can be hidden or
misinterpreted. Having the ability to swivel or spin
the tetrahedron is a great help in gaining a deeper
understanding of the data being viewed.

Animation: The ability to view points or dots moving
in real time is very useful to gain an understanding
of trends, transients or the periodicity of the data
under observation. This has already been alluded to
earlier in the paper.

Tooltips: Sometimes when there is a cloud of points
in a Barry007 visualization, you would like to know
what a given point in the cloud represents. For ex-
ample, if you are looking at the CPU utilization for
1000 CPUs (whether separate distinct processors,
cores on a system or separate servers) and you see
an outlier, it would be useful to be able to move the
mouse over that point and have a tooltip appear
(a small window or bubble enclosing text) which
states the name or number of the processor along
with some identifying configuration data, e.g., lo-
cation, purpose (server, desktop, mail server, DB-
server etc.). Another variant could be that once the
dot keeps on moving the tooltip follows the dot for
a selected amount of time, e.g., 10 seconds or a
minute or until another point is moused over.

Categorical highlighting: If you are looking at net-
work utilization for LAN segments, one might have
all the half-duplex segments highlighted in blue,
whereas the full-duplex segments might be maroon.
Similarly, one could have a color coding scheme for
the speed of each segments, e.g., 10 Mbs, 100 Mbs
or 1 Gbs. Again, one could have all head office
segments with one color and the Ottawa branch of-
fice highlighted a different color. Another possible
way of highlighting is using different symbols instead
of the dots, e.g., you could have a symbol for file
servers, desktops, DB servers etc. You could com-
bine this with color highlighting for different granu-
lar effects, i.e., all DB servers at head office vs. all
DB servers at a branch office.

Parametric highlighting: It is possible to have for
example on a CPU Barry007 visualization all points
close to the 100% idle utilization level highlighted
as blue, all points close to the 100% user utiliza-
tion level and all points close to the 100% system
utilization as red. Also, the intensity of the color
highlighting should be proportional to the proximity
to the 100% level. The closer the point is to the
100% system utilization the brighter red it is.

Sound effects: Another possible enhancement to

Barry007 is the use of sound effects to highlight cer-
tain conditions. For example, if a broadcast storm
is an undesirable occurrence, a sound effect simi-
lar to the Geiger radioactive counter detector could
be used where the intensity of the sound could be
related to the seriousness of the broadcast storm.

7 CONCLUSION

Relatively little progress seems to have been made in de-
veloping new PerfViz paradigms since Barry1992 [11].
Most commercial performance management tools still
rely on 20 year-old GUI technology to display monitored
data in relatively simple graphical styles.

According to statistician Michael Friendly’s “Best and
Worst of Statistical Graphics” (www.math.yorku.ca/
SCS/Gallery/milestone/sec9.html#), more empha-
sis has been given to InfoViz applications such as:
“Table Lens” (c.1994), cartographic data visualization
(e.g., http://earth.google.com/) and “Sparklines”
(en.wikipedia.org/wiki/Sparkline). Along with
Table Lens, Stuart Card and colleagues at Xerox PARC
also developed “Cone Trees” and the “Hyperbolic
Browser” (see http://www.ramanarao.com/papers/
rao-infoviz-nextgen-workspace-1995.pdf). Ar-
guably, the most recent developments have occurred in
3D web visualizations, such as explaining the secret be-
hind the construction of the Great Pyramid (khufu.3ds.
com/introduction/) and dynamic Flash animations of
blog statistics (labs.digg.com/swarm/).

In the PerfViz arena, a stalemate seems to exist between
performance-tool vendors who do not want to invest in
engineering development where they see no demand, and
end users who are not aware of what they are missing in
terms of alternative visualization techniques for solving
performance management problems. Hence, an impor-
tant motivation for writing this paper is to provide a cat-
alyst for an ongoing dialog between CMG performance
analysts, managers, tool vendors, statisticians, psychol-
ogists, and other experts, to formulate better visualiza-
tion paradigms for the performance management tools
of the future. The goal is not develop tools that merely
look “cool” or present a novel “Gee-whiz!” factor (al-
though that might not hurt sales), rather it is to find
new paradigms that provide an optimal visual impedance
match whereby performance management becomes more
efficient in today’s increasingly complex computer envi-
ronments.

Like the categorical data in Sect. 5.3, we are looking at

14

methods to examine high-dimensional multivariate data
by selecting any quartet of attributes for Barry-4 display.
As with all visual representations, barycentric coordinates
have strengths and weaknesses, and although we do not
claim that one-size fits all, the Barry007 suite of visual-
izations does rank well in Table 2. The screens shots and
visual examples shown in this paper are not meant to im-
ply the existence of any product with those capabilities.
On the contrary, since no products exist today with these
capabilities, all screen shots are necessarily from proto-
types that give a hint of how a commercial tool might
appear.

8 ACKNOWLEDGMENTS

One of us (NJG) wishes to thank James “Scott” Johnson
for bringing the Apdex metric to our attention, as well
as Peg McMahon and Justin Martin for making an early
draft of their paper available. We are both grateful to
Peter Sevcik of the Apdex Alliance for providing us with
the data used in Sect. 5.3.

References

[1] M. Gasko A. W. Donoho, D. L. Donoho. “MacSpin:
Dynamic graphics on a desktop computer”. IEEE
Computer Graphics and Applications, 8(4):51–58,
July/August 1988.

[2] J. W. Tukey. Graphics 1965–1985. In W. S.
Cleveland, editor, The Collected Works of John W.
Tukey, volume V. Wadsworth & Brooks/Cole, Pa-
cific Grove, California, 1988.

[3] J. A. Brown, A. J. McGregor, and H-W.
Braun. “Network performance visualization: Insight
through animation”. In PAM 2000: Passive and
Active Network Measurement Workshop, Hamilton,
New Zealand, April 3–4 2000.

[4] “HPVC: High performance visualization cen-
ter”. www.hpvc.chl.state.ms.us/about.htm,
June 2005.

[5] “Visualization for parallel performance eval-
uation and optimization”. www.cc.gatech.
edu/computing/classes/cs7390 98 winter/
reports/parallel/chap23.html, March 1998.

[6] “ParaGraph: A performance visualization tool
for MPI”. www.csar.uiuc.edu/software/
paragraph, August 2003.

[7] F. Werblin and B. Roska. “The movies in our eyes”.
Scientific American, pages 73–79, April 2007.

[8] W. Hendee and P. Wells (Eds.). The Perception of
Visual Information. Springer-Verlag, 1993.

[9] R. Olcott. “The dimensions of service—Exploring
WLM’s solution space”. In Proc. CMG Conf., pages
15–82, Las Vegas, NV, 2002.

[10] G. E. P. Box, W. G. Hunter, and J. S. Hunter.
Statistics for Experimenters: An Introduction to De-
sign, Data Analysis, and Model Building. Wiley,
New York, 1978.

[11] N. J. Gunther. “On the application of barycen-
tric coordinates to the prompt and visually efficient
display of multiprocessor performance data”. In
R. Pooley and J. Hillston, editors, Proceedings of
Sixth International Conference on Modelling Tech-
niques and Tools for Computer Performance Eval-
uation, volume Edinburgh, Scotland, pages 67–
80. Antony Rowe Ltd., Wiltshire, U.K., September
1992.

[12] E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, 1983.

[13] W. Cleveland. The Elements of Graphing Data.
Wadsworth, 1985.

[14] R. Harris. Information Graphics: A Comprehensive
Illustrated Reference. Oxford. Univ. Press, 1999.

[15] P. Keller and M. Keller. Visual Cues: Practical Data
Visualization. IEEE Press, 1993.

[16] H. Chernoff. “The use of faces to represent points
in k-dimensional space”. J. Amer. Stat. Assoc.,
68:361–368, June 1973.

[17] K. Kolence and P. Kiviat. “Software unit profiles
and Kiviat figures”. Performance Evaluation Re-
view, 2(3):2–12, September 1973.

[18] A. Inselberg. “The plane with parallel coordinates”.
The Visual Computer, 1:69–91, 1985.

[19] W. N. Venables and B. D. Ripley. Modern Applied
Statistics with S. Springer, New York, 4th edition,
2002.

[20] L. Merritt. “Seeing the forest and the trees: Ca-
pacity planning for a large number of servers”. In
Proc. CMG Conf., Las Vegas, NV, 2004.

[21] P. McMahon and J. A. Martin. “Death to dash-
boards, and other thoughts on data visualization:
Alarming, forecasting and performance manage-
ment based on variance”. In Proc. CMG Conf., San
Diego, CA, 2007.

[22] L. Kleinrock. Queueing Systems. Volume I: Theory.
John Wiley, NYC, New York, 1976.

[23] Particle Physics Data Group. Particle Physics Book-
let. Lawrence Berkeley Laboratories, Berkeley, CA,
2006.

[24] J. P. Buzen and A. W. Shum. “MASF—Multivariate
adaptive statistical filtering”. In Proc. CMG Conf.,
pages 1–10, Nashville, TN, 1995.

15

Table 2: Comparison of performance monitor design attribute

Attribute Barry007 Kiviat mpstat Chernoff
Localized × × × ×
Animation × × × ?
Multi-p × - × ×
MP × - × -
Clustering × - - -
Patterns × - - -
Cognition × × - -
Semantics × × - -
Generality × - - -
Journaling × - × ? Page 1 of 1untitled text 2

Printed: Friday, April 20, 2007 Apr 20, 2007 3:57:57 PM Printed For: Neil Gunther

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl!

 0 2 0 4191 7150 6955 1392 93 374 573 14 1433 78 22 0 0!

 1 2 0 179 11081 10956 1180 132 302 1092 13 1043 79 21 0 0!

 2 1 0 159 9524 9388 1085 141 261 1249 14 897 79 21 0 0!

 3 0 0 3710 10540 10466 621 231 116 1753 2 215 70 29 0 0!

 4 5 0 28 355 1 2485 284 456 447 30 2263 77 23 0 0!

 5 5 0 25 350 1 2541 280 534 445 26 2315 78 22 0 0!

 6 3 0 26 331 0 2501 267 545 450 28 2319 78 22 0 0!

 7 2 0 30 292 1 2390 232 534 475 23 2244 77 22 0 0!

 8 4 0 22 265 1 2188 220 499 429 26 2118 75 25 0 0!

 9 2 0 28 319 1 2348 258 513 440 26 2161 76 24 0 0!

 10 4 0 23 308 0 2384 259 514 430 22 2220 76 24 0 0!

 11 4 0 27 292 0 2366 237 518 438 30 2209 77 23 0 0!

 12 11 0 31 314 0 2446 253 530 458 27 2290 78 22 0 0!

 13 4 0 31 273 1 2334 223 523 428 25 2261 79 21 0 0!

 14 12 0 29 298 1 2405 247 521 435 25 2286 78 22 0 0!

 15 4 0 32 330 1 2445 272 526 450 24 2248 77 22 0 0!

 16 5 0 28 271 0 2311 219 528 406 29 2188 76 23 0 0!

 17 4 0 23 309 1 2387 253 537 442 25 2234 78 22 0 0!

 18 3 0 25 312 1 2412 257 534 449 26 2216 78 22 0 0!

 19 3 0 29 321 1 2479 262 545 462 31 2287 78 22 0 0!

 20 14 0 29 347 0 2474 289 541 457 24 2253 78 22 0 0!

 21 4 0 29 315 1 2406 259 534 469 24 2240 77 22 0 0!

 22 4 0 27 290 1 2406 243 531 480 25 2258 77 22 0 0!

 23 4 0 27 286 1 2344 235 531 445 26 2240 77 22 0 0!

 24 3 0 30 279 0 2292 228 518 442 22 2160 77 23 0 0!

 25 3 0 26 275 1 2340 227 538 448 25 2224 76 23 0 0!

 26 4 0 22 294 1 2349 247 529 479 26 2197 77 23 0 0!

 27 4 0 27 324 1 2459 270 544 476 25 2256 77 23 0 0!

 28 4 0 25 300 1 2426 249 549 461 27 2253 77 23 0 0!

 29 5 0 27 323 1 2463 269 541 447 23 2277 77 22 0 0!

 30 2 0 27 289 1 2386 239 535 463 26 2222 77 23 0 0!

 31 3 0 29 363 1 2528 304 525 446 26 2251 76 23 0 0!

Figure 18: One sample of mpstat output on a 32-way multiprocessor

TRADEMARKS

IBM z/OS is a registered trademark of IBM Corp. S-Plus is a registered trademark of Insightful Corporation. SAS
is a registered trademark of the SAS Institute Inc. Mathematica is a registered trademark of Wolfram Research, Inc.
Toblerone is a registered trademark of Kraft Foods Schweiz, AG. All other Trademarks, product names, and company
names are the property of their respective owners.

16

