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Abstract

How do you determine where the response-time “knee” occurs? Calculating where the response
time suddenly begins to climb dramatically is considered an important determinant for such things as
load testing, scalability analysis, and setting application service targets. This question arose in last
month’s MeasureIT. I examine it here in a rigorous but unconventional way.

1 Introduction

In last month’s issue of MeasureIT, Michael Ley wrote an article entitled: Does the Knee in a Queuing
Curve Exist or is it just a Myth? Referring to the general shape of the response time curve in Figure 1, he
asks:

“Exactly what is the knee in the queuing curve? How would you define it and how would you
calculate it?”
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Figure 1: Classic response time profile for a single-server queue.

Apparently, he asked this question of a lot of people, including various performance experts and elicited a
plethora of inconsistent responses. From all that he concluded:
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“... that the ‘knee in the curve’ is a myth and one which, as the Mythbusters say, ‘is busted’.”

Since he didn’t ask me, I thought I would take a shot at addressing his question here. I believe I’m in a
good position to do this because I have already considered a similar question that was raised by a student
in one of my Guerrilla performance classes. I’ll come back to that variant of the question in Section 4.
Although I didn’t consider it worth publishing formally, I did blog about it on March 8, 2008. This is a
more elaborate version of that blog posting.

1.1 My Response

I don’t know Michael Ley, but if I had been asked the same question, my unequivocal answer would have
been:

• There most certainly is a well-defined knee.

• There is no there, there.

and the immediate corollary is:

• There is another there there, but it’s elsewhere.

To fully appreciate the indisputable consistency of my answer, I need to present a little more detail.

We have all seen plots like Figure 1 many times in the course of doing performance analysis. Because of
this familiarity, we sometimes get sloppy about the way we refer to these curves. We forget about of the
hidden assumptions, not to mention being blind to the rather deep math sitting behind these curves. Ley’s
question presents an opportunity to bring some of those hidden details to the surface in a way that is not
found in the usual performance analysis or queueing theory literature. I will endeavor to bring in only that
mathematics which is necessary to clarify particular points in my discussion.

1.2 The Point About Knees

Let’s start by clarifying some of the terminology that I will use in the subsequent sections.

Definition 1 (Function) A function is a mapping between points on the x-axis (domain) and points on
the y-axis (range). The curve in Figure 1 is a continuous function that maps the load or utilization value
(ρ) to a response time value (R/S).

Definition 2 (Extremum) The value of a function where its first derivative (slope) is zero. Since this
can be either a maximum or minimum in the curve, it is also known as a turning point because the slope
ceases to either increase or decrease. In the popular press, a maximum has become known as the “tipping
point.”

Definition 3 (Point of Inflection) A point on the curve or continuous function where the second deriva-
tive (change in the slope) switches sign. A point of inflection must exist between any successive maximum
or minimum.
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Ley was apparently prompted (or provoked) to inquire further about the definition of a “knee” because
certain instructors attempted to single out a unique point on the M/M/1 function:

“... the traditional 70% utilisation level on the curve...”

and things went downhill from there.

Definition 4 (Optimum) Here, I shall mean a unique point on the response time function which corre-
sponds to the load of greatest advantage or least cost. In certain cases, the optimum is an extremum (see
Definition 2).

Definition 5 (Knee) Although we see this word all the time in performance analysis, the term “knee’ is not
a well-defined term in mathematics. It’s performance analysis idiom. Its closest mathematical couterpart is
a continuous function (Definition 1) that exhibits a discontinuity [1] in its first derivative or slope. In the
continuum of points belonging to the function, there can be one or more points where the slope changes
abruptly, and the second derivative (change in the slope) becomes infinite. See examples in Figure 2.
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Figure 2: Well-known functions with gradients that change discontinuously.

Figure 2 shows two functions that have knee-like discontinuities: the triangle function: Λ(x) = 1− |x|, and
Heaviside step-function: θ(x) =

∫ x

−∞ δ(s)ds, where δ(s) is the Dirac delta function1.

Example 1 If we think about the distance covered by an automobile as a function of time, then the first
derivative is called the velocity and the second derivative is the acceleration. A common informal rating
for an automobile is the finite amount of time it takes to accelerate from from 0 mph to 60 mph. A “knee”
in the velocity function would correspond to going from 0 to 60 mph in zero seconds and would look like
Figure 2(b). To accomplish this feat would require infinite acceleration.

Personally, I never use the word “knee” when referring to Figure 1 because I prefer to characterize it with
several rules-of-thumb.

Example 2 In my classes I like to point out that ρ ' 0.0, ρ = 0.50 and ρ = 0.75 are more useful rules-of-
thumb or ROTs. In the neighborhood of zero utilization (very light load), the response time (R) is expected

1 Dirac extended the delta function concept in order to get a better mathematical handle on certain knee-like discon-
tinuities that arose in the formulation of quantum mechanics [2].
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to be close to a single service period (S), irrespective of whether that service period is measured in seconds,
weeks or any other time base. At 50% load (center vertical line in Figure 1), the expected response time is
two service periods (R = 2S). At 75% load (vertical line right of center), the expected response time will
be four service periods (R = 4S).

It’s just as well to keep the acronym, ROT, in mind and not take such things too literally. Now, you can
see why ρ = 0.70 is just another particular ROT. Contrary to what some people may tell you, there’s
nothing sacred about 70% utilization. I’ll come back to ROTs in Section 4 and demonstrate how aiming
for ρ = 0.70 utilization can actually lead to nonsense capacity estimates.

Definition 6 (Hyperbola) One of the family of conic section curves. A canonical hyperbola corresponds
to slicing the cone at an angle. The applicability of the canonical hyperbola to response time curves
is discussed in Section 5. A rectangular hyperbola corresponds to the special case of slicing the cone
vertically. The applicability of the rectangular hyperbola to response time curves will be discussed shortly
in Section 3. Appendix A contains more information about the properties of hyperbolæ.

Example 3 Cooling towers for a nuclear power plant have a hyperbolic cross-section, because they offer
greater surface area than a cylinder of the same height.

Definition 7 (Asymptote) An asymptote is a line (or curve) that provides a characterization of a function
of interest, as we move away from the origin. It is expressed in terms of how the function approaches the
asymptote line. All the asymptotes we shall consider are straight lines or linear asymptotes. The curve of
interest will be the response time function.

Example 4 A familiar example of a linear asymptote is the x-axis with respect to a negative exponential
function: exp(−κx); usually associated with inter-arrival periods in queueing theory). The exponential Remove paren
function decays towards the x-axis, but only reaches it at infinity, and never goes below it.

2 D/D/1 Queue

Ley’s original question about knees was in reference to M/M/1 response times, like Figure 1. Let’s step
back from the M/M/1 queue to a simpler case, viz., the single-server deterministic queue; D/D/1 in
Kendall notation [3]. The response time profile is shown in Figure 3.

Here, D refers to both inter-arrival periods and service periods that are deterministic. Since the period
between arrivals (the first D) is the same for all requests, we can think of a conveyor belt in a manufacturing
assembly line. Consider a shrink-wrap machine putting plastic on boxes of software. The time to apply
the shrink-wrap plastic is exactly the same for each box (the second D). Moreover, since the spacing
between unwrapped boxes approaching the shrink-wrapper is the same distance, there is no possibility of
boxes piliing up and creating a queue. Since no time is spent queueing, the response time profile looks like
Figure 3.

It tells us that the response time remains completely “flat,” at R = S, unless the utilization of the shrink-
wrap becomes 100% busy, in which case boxes suddenly begin to pile up on the conveyor belt. This could
happen if, for example, the spacing between the boxes was shorter than the time it took to apply the
shrink-wrap plastic. Then, the approaching boxes would start to collide with the shrink-wrapper.
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That's a knee!
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Figure 3: Response time profile for a single-server deterministic queue.

Remark 1 The important point for our discussion is that the response time curve for D/D/1 possesses a
knee at the point ρ = 1, consistent with Definition 5. In fact, it’s akin to the discontinuity in Figure 2(b),
approached from the left side. To paraphrase Crocodile Dundee: That’s a knee!

Another way queueing can arise is, if the boxes of software were thrown onto the conveyor belt at random
times (i.e., a Poisson process). That would correspond to an M/D/1 queue (Figure 4) with a non-zero
waiting time contribution to the response time in the range 0 < ρ < 1.
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Figure 4: Response time profiles for three single-server queues.

If the service periods also became randomized, then the waiting time contribution would be even greater
than that for M/D/1 (see Figure 4). Random service periods could occur if, in addition to the fixed time
for applying the plastic wrap, it also included the variable time to fill the boxes with a CD, user manual,
bubble wrap and so on, The conveyor belt would then behave like an M/M/1 queue.

Remark 2 (Load Testing) Incidentally, that’s why it’s important for load testing tools to facilitate ex-
ponential think times in client scripts. It forces significant queueing to occur, which may reveal buffer
overflows and other performance limitations that would otherwise not be detected with constant or uni-
formly distributed think times between transactions. This point becomes even more relevant for Section 5.
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Neither M/D/1 nor M/M/1 response time profiles possess a knee that is consistent with Definition 5.
There is no there, there. However, one could literally ask: Is there a point on those curves that comes
closest to the D/D/1 knee? If so, that could be useful for determining optimal loading of a computer
system, in the sense of Definition 4.

3 M/M/1: Thinking Outside the Box

In this section, I am going to examine the M/M/1 queue in a rather unconventional way. From the
standpoint of performance analysis, the utilization of a physical resource cannot exceed 100%. Similarly, in
queueing theory, the server utilization is only defined for the range of values: 0 ≤ ρ < 1, because as ρ→ 1,
the normalized response time:

R

S
=

1
1− ρ

(1)

rapidly approaches infinity. The technical description is, it “blows up” at ρ = 1. As you can see in Figure 4,
a similar constraint holds for both M/D/1 and D/D/1 response times.

3.1 Negative Utilization

In the foregoing, however, I only need to pay attention to the usual range restriction on ρ, if I’m interested
in physically meaningful performance metrics (which I usually am). Otherwise, I can put on my mathe-
matician’s hat and freely chose ρ outside its conventional range; even if it doesn’t make physical sense. For
example, if I define x to be any value on the real number line: −∞ < x <∞, then eqn. (1) becomes:

y =
1

1− x
(2)

I’ve also replaced R/S by y to allow for negative values there, should they arise. See Section 5.

Figure 5 shows what this unrestricted generalization of the response-time curve looks like, when we allow
x to become negative. The red box represents the region to which we are usually confined when doing
performance analysis. The blue curve belongs to a class of functions called a hyperbola in Definition 1.
The hyperbola has two asymptotes. See Appendix A for more details.

The relative angle between the asymptotes can range between 0° and 180°. That the asymptotes in Figure 5
are orthogonal, i.e., make an angle of 90°, accounts for the use of the term rectangular to describe this
particular hyperbola variant. See Definition 1 The negative x-axis acts as one asymptote, while the other is
formed by the vertical line parallel to the y-axis at x = 1. The diagonal dashed-line is an axis of symmetry
called the transverse axis. The point V, where the hyperbola and the transverse axis intersect, is called the
vertex.

3.2 Hyperbola Vertex as an Optimum

Here now, for the first time in this discussion, we can identify a unique point V on the curve which is a
candidate for an optimum, consistent with Definition 4. If we rotated Figure 5 clockwise by -45° so that it
was oriented like Figure 13), V would correspond to a minimum. Presumably, this is one aspect that the
performance experts were dithering over when trying to address Ley’s question. But it’s not a minimum in
the orientation of Figure 5. The minimum of that curve lies out at x→ −∞.
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The vertex at (0, 1) is indeed a single point on the hyperbola that can be uniquely defined in a mathematically
rigorous way. It also sits at the right place to represent an optimum, viz., the minimal distance to the center
at (1,0). But that’s only significant if you are just considering the hyperbola itself. Unfortunately, the vertex
V is precisely the point of zero load (ρ = 0) at the edge of the red box in Figure 1 and thus, is quite useless
for characterizing a response time optimum.

In Figure 3, the D/D/1 knee is located at (1, 1), not (1, 0) as in Figure 5. What happens if we try to
correct for that difference in the M/M/1 curve? Figure 6 shows an alternative optimum, P , which is not
a point of symmetry on the hyperbola. It is defined by the intersection of the M/M/1 curve with the
normal line (orthogonal to the tangent line) that passes through (1, 1). The length PK corresponds to the
minimal distance, from the hyperbola to the D/D/1 knee.

Although P is a better candidate than V , for an optimum, it is still not very useful because it is located
at a load point corresponding to ρ < 0.5 in Figure 1. Put differently, although P lies inside the red box,
it is located in the light-load performance region, and that’s not what people have in mind when they are
trying to define response time thresholds. Can we define an optimum for ρ > 0.5?

3.3 Latus Rectum as an Optimum

Consider Figure 7. The dashed line segment labeled LR, runs perpendicular to the transverse axis, and is
known as the latus rectum (No, it’s Latin for “straight side.” See Appendix A). The latus rectum intersects
one of the foci (F = aε) of the hyperbola and, more interestingly, it also intersects the hyperbola at the
point L; above the point P in Figure 6. This is another point on the hyperbola that is geometrically

V
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Figure 5: The response time function in Figure 1 with 1:1 aspect ratio and extended outside the
region of physically meaningful performance metrics (red box) to reveal its hyperbolic character. The
dashed line is an axis of symmetry known as the transverse axis. The point (V ) where the transverse
axis intersects the hyperbola is called the vertex.
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Figure 6: The optimum P defined by the intersection of the M/M/1 hyperbola with the normal (dotted
line) which passes through the knee K. P is not a point of symmetry.

well-defined, and more importantly, it’s inside our performance region of interest. Can we use it to define
an alternative optimum?

Well, we can, but it’s still not very satisfying because it corresponds to a load value of ρ = 0.58. As I
already pointed out in Example 2, ρ = 0.5 corresponds to a stretch factor of 2 service periods so, why go to
all the trouble of applying the latus rectum to define a load point that is only 50% bigger than that ROT?

What about choosing a line parallel to the latus rectum but sitting further out at 2, 3 or 4 multiples of the
focal distance F? Indeed, such choices would certainly correspond to points further up the hyperbola and
they would be inside the region of interest. But when you’ve finally settled on a multiple of 4, I’ll prefer a
multiple of 5, and the next guy will want 6. There’s no end to this because such multiples have no rigorous
definition in the context of the hyperbola. They are no longer unique. In other words, even after all this
rigorous geometrical effort, we are no better off in terms of defining a true optimum.

3.4 Service Level Objectives

In the final analysis, this is why we have service levels, service targets and service level agreements. Figure 8
shows some examples of how such service goals can be related to the response time function. Bear in mind
that the service targets shown here are based on average response times, whereas realistic service targets
should be chosen on the basis of additional statistical information, such as percentiles and so on.

From a mathematical standpoint, these values are completely arbitrary because there is no convenient way
to specify them more rigorously as optima consistent with Definition 4. To avoid the appearance of whimsy,
such targets are usually selected behind closed doors after some kind of concensus is reached amongst the
interested parties or stakeholders. The question that service levels really tries to address is, what response
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Figure 7: The dashed line segment (LR), perpendicular to the transverse axis, is called the latus
rectum. The latus rectum intersects one of the foci (F = aε) of the hyperbola. It also intersects the
hyperbola inside the performance region of interest (red box in Figure 5) at the point L.
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Figure 8: Example service level objectives shown as horizontal lines for M/M/1 response times.
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time or stretch factor can you tolerate? Compared with the foregoing discussion about optima defined by the
geometrical properties of hyperbolæ, the answer to that question can only be subjective, not mathematical.

At best, a service level corresponds to choosing a horizontal line in Figure 8. Once that choice has been
made, the performance analyst can then determine what the corresponding load (ρ) ought to be. Even
after this process has been exercised, the agreed upon service levels are only as good as the last consensus
meeting. If better response times are observed when the application is being used, those will become the
new service objectives in the next round of service level negotiations. This is why service levels are often
more about politics than performance.

4 M/M/m Queue

In Section 3 the analysis focused on a single-server queue. What happens if we consider the more general case
of a multi-server queue? This is the sort of simple queueing model that might apply when doing preliminary
capacity planning or performance analysis for the new generation of multicore processors. Historically, it’s
the queueing model Erlang originally developed to address capacity planning questions about the “Internet”
of his day; the telephone system in 1917 [3].

Figure 9(a) shows some typical response time profiles for M/M/m with m = 1, 2, 3, 9, 16, chosen arbitrarily.
The PDQ code to produce it is provided in Appendix B listing 1. As you might expect, the uppermost
curve (m = 1) corresponds to the response time profile in Figure 1. As we add more server capacity, we
see that the response time remains close to a single service period, i.e., R/S = 1, at higher loads than is
the case for M/M/1. Another way of saying the same thing is, that the response time curve for increasing
m, appears to get sharper in the direction of the lower-right corner, which we know from Section 2 is the
knee of the D/D/1 response time function.
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(a) Response time curves for m = 1, 2, 3, 9, 16.
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(b) R/S with a 1:1 aspect ratio

Figure 9: The dashed line that seems to pass through all the curves in 9(a), appears on the right-hand
side of 9(b) almost flush with the y-axis. Note that the y-axis in 9(b) starts at R/S = 1, not zero.
The dotted line in 9(b) is the minimal distance normal from each curve to the D/D/1 knee.
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4.1 The Multicore Wall

The M/M/m queue can be used a simple model of multicore scalability, where the waiting line represents
the scheduler’s run-queue. Referring to the 16-way response time function (lowest curve) in Figure 9(a) as
the load is increased, R remains quite flat right up to about 90% core utilization. Only above ρ = 0.90
does the response time increase, but it increases very suddenly! And that’s the rub. Recalling the ρ ≤ 0.70
ROT of Section 1.2, it is clear that R = S, well above that “traditional” load point. In fact, the utilization
needs to be much higher. If you’ve paid for a high-end 16-way multicore machine, you had better be
making use of all those cores as often as possible in order to justify the expense of the hardware or software
development or both. Its a bit like buying a Ferrari. You need to drive it at top speed (otherwise, what’s
the point?), but if you redline it for too long, the engine might blow up. The redline represents a wall;
the multicore wall. Applying the tradition 70% ROT would lead to a serious waste of capital investment
dollars.

Remark 3 As m → ∞, the M/M/m response time profile approaches that of D/D/1. This is a conse-
quence of the increasing capacity from m servers eliminating the likelihood that a waiting line will form.

As I alluded to in Section 1, an astute Guerrilla alumnus asked me if those sharpening curves fell on a line
(the dashed line in Figure 9(a)) in such a way that the line could be used to better characterize response
time performance. At the time, I wasn’t sure myself. When I finally did look into it, I discovered something
even more complex than I have presented so far.

4.2 Rational Spaghetti

Figure 9(b) is Figure 9(a) re-plotted with a 1:1 aspect ratio. We see immediately that the curves take on a
totally different appearance. It’s also clear that the dashed line is a kind of optical illusion. The reason this
is just an illusion, is similar to the explanation given in Section 3. When you look outside the performance
box, the curves take on a totally different character.
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Figure 10: The M/M/m counterpart of Figure 5. The main difference is that y-values can also be
negative. The red box indicates the region of physically meaningful performance metrics.
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Relaxing the range restriction on ρ in the same way we did before, i.e., ρ 7→ x, produces the amazing curves
shown in Figure 10. They resemble colored spaghetti and are obviously more complex than anything we
considered for M/M/1. They fall into two major categories:

1. Functions with even-valued m exist only in the upper half-plane.

2. Functions with odd-valued m can exist in both the upper and lower half-planes.

The denominator of these response time functions is a polynomial of the form 1− xm, and therefore it has
singularities (infinities) whenever xm = 1. Like eqn. (1) these functions also blow up at the singularities,
but now the infinities can go in either the positive or negative y-direction. These response time functions
are known as rational functions, and the functions with m > 1 are not hyperbolæ.

Regrettably, just like M/M/1, it it not possible to define a unique line of knees for M/M/m, despite
initial appearances in Figure 9(a)).

5 M/M/1//N Queue

All the queueing systems that I’ve discussed so far can contain an arbitrary number of requests. Although
Ley doesn’t define it, that’s the meaning of the Kendall notation: M/M/1/∞ in his article. It’s accepted
convention to drop the ∞ part, but it denotes an infinite source of requests, like the Internet. And just
like the Internet, a server could potentially get flooded and the web site could blow up.

Figure 11: What a Denial-of-Service (DoS) “blow up” looks like on the Internet.

The same thing can happen in response time equations, like eqn. (1). If too many requests are allowed, the
waiting line will grow unbounded, but instead of getting an HTTP 503 or Figure 11, it will give spurious
numbers. To avoid this problem, the constraint ρ < 1 is imposed on the per-server utilization.

5.1 Load Test Systems

There is another type of queueing system, where the number of requests allowed is a fixed and finite
number, N . You can almost guess that the Kendall notation is M/M/1//N ; the double slash just means
both the total number and the queue size can never be bigger than N .This queue is mentioned obliquely
in Definition 7 of Ley’s article. Its characteristics will also be very familiar to anyone involved with load-
testing, application stress-testing or benchmarking [4]. By their very nature, these systems involve a finite
number of requests generated by the load-test clients, often with some think delay in between. This
changes everything!

Primarily, the response time formula is completely different from eqn. (1). For a single-server queue with

12



Rmin

R¥

K

P

10 20 30 40 50 60 70
N

-10

10

20

30
R�S

Figure 12: Response time “hockey stick” profile for a single-server queueing system containing N
requests. The asymptotes intersect at the point K, which is the logical counterpart of the knee in
Figures 3 and 6. The dashed line are the transverse and conjugate axes.

a service time S and think delay Z, the normalized response time is given by [3]:

R(N)
S

=
N

ρ(N)
− Z

S
, (3)

where it should be noted that the utilization (and therefore the corresponding response time) depends
nonlinearly on the particular value of N . This important difference is denoted ρ(N) and R(N), respectively.
The parameters, S and Z, are constants and independent of N .

The corresponding profile is shown in Figure 12 and the PDQ code to produce it is provided in Appendix B
listing 2. The phrase “hockey stick” is often used to describe this type of response time curve. It also looks
remarkably like Figure 13 rotated counterclockwise, so that one of the asymptotes becomes aligned with
the x-axis.

Remark 4 A serious point of confusion is introduced in Ley’s Definition 7. An attempt is made to demon-
strate that there is no knee in the M/M/1//N curve by plotting the response time R against ρ in a
manner similar to Figure 1. This serves no good purpose. For M/M/m, utilization is the independent
variable, and a linear function of request rate λ, due to Little’s law ρ = λS. Therefore, equal increments
in λ (request rate) correspond to equal increments in ρ. The increments on the x-axis scale remain equal.
M/M/1//N , on the other hand, is a self-regulating system due to the constraint of finite requests, and
the utilization becomes a nonlinear function of the N requesters; denoted by ρ(N) in eqn. (3). Therefore,
equal increments in N do not produce equal increments in ρ(N) on the x-axis scale. N is the independent
and linear variable. That’s why we plot R against N , and not ρ.

5.2 Asymptotes and Optima

From Definition 7, the performance bounds [3] are given by the asymptotes:

Rmin = S and R∞ = NS − Z (4)

They intersect at the point K, which is the logical equivalent of the knee in Figure 3. The position of K
on the N -axis is given by [3]:

Nopt =
Rmin + Z

Smax
≡ S + Z

S
, (5)
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which is a first-order indicator of the optimal load point for N requests in the queueing system [3]. To
the left of Nopt, resources are generally being underutilized. To the right of Nopt, the system tends to be
driven in saturation, the waiting line grows and response climbs along the R∞ asymptote.

Remark 5 A plausibly more accurate optimum is given by the point P in Figure 12. It’s value on the
N -axis, NP is always less optimistic than Nopt.

Notice that, unlike M/M/m, these asymptotes are not orthogonal and the R∞ asymptote can be extended
to any desired length. This accounts for the “hockey stick” appellation often given to the M/M/1//N
response time profile.

So, there is a knee there, at the intersection of the asymptotes. It also corresponds to a point of server
saturation, i.e. ρ(Nopt) = 1, similar to the D/D/1 knee. Unlike D/D/1, however, we can drive the system
beyond that point and approach infinity more gracefully as it climbs linearly along the hockey-stick handle.
This follows from the self-regulating characteristic of M/M/1//N . Although Nopt is not a knee on the
response time curve, like P , it dose offer a simple first-order guideline for optimizing response times.

6 Conclusion

Contrary to Ley’s conclusion, there really is no myth to bust. There does, however, seem to be plenty
of bovine dust clouding the issue, due to incorrect and sloppy use of performance analysis concepts. A
knee (consistent with Definition 5) does exist for both open queues, like M/M/1, and closed queues, like
M/M/1//N . It lies at the intersection of the response time asymptotes.

In the case of M/M/1, there is no there, there. There is no “knee” that fulfills Definition 5) lying on
the response time curve itself. The server saturation point (ρ = 1) cannot be reached without the system
going unstable (infinite queueing). It was noted in Remark 3, that the saturation point can be approached
more closely by an M/M/m queue as m→∞. Nor, it turns out, are there any other convenient optima,
consistent with (Definition 4). As Ley himself recognized, this essentially eliminates all 10 of his expert
responses. Of course, that’s why we resort to rules-of-thumb or subjective service targets. No news there—
or, it shouldn’t be news.

The situation is subtly different for M/M/1//N . There is a there there, but it’s elsewhere. The server
saturation point, ρ(N) = 1, can be reached and exceeded, with the system remaining stable. The location Replace outer

parens with
commas

of the knee K in Figure 12 is determined by the input parameters: S,N, and Z, and its x-axis component
is given by Nopt, which is an approximate optimum. A more accurate optimum is represented by the point
P on the response time curve. Calculating its exact location is left as an exercise for the reader.

I suspect that a lot of the confusion surrounding the use of the word knee, has to do with people (even
experts) cavalierly blurring the distinction between Figure 12, where there is a knee that can be referenced
as a guiding optimum, and Figure 1, where the knee is a limiting case and not a useful optimum. That
so many “performance experts” gave so many bizarre answers is alarming, but making us aware of those
phantasms may have been the more important outcome of Ley’s questioning. Next time, you will know
how to apply hyperbolæ to such hyperbole.
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Appendices

A Hyperbolæ

This Appendix summarizes more than you ever wanted to know about hyperbolæ.

A.1 Canonical Hyperbola

A canonical north-south opening hyperbola is defined in Cartesian coordinates by:

(y − k)2

a2
− (x− h)2

b2
= 1 (6)

V

F LR

-4 -2 2 4
x

-4

-2

2

4
y

Figure 13: Equation (6) with a = 1 and b = 2 centered at h = 0 and k = 0.

Referring only to the upper curve, its properties are:

Asymptote rectangle width: x = ±b ≡ ±2

Asymptote rectangle height: y = ±a ≡ ±1

Asymptotes: diagonals y = ±ax/b ≡ ±x/2
Vertex: V is the point closest to the center (h, k) located at (h, a) ≡ (0, 1)

Transverse axis: same as y-axis

Conjugate axis: same as x-axis

Eccentricity: ε =
√
a2 + b2/a ≡

√
5. ε > 1 for hyperbola.

Focus: distance from center (h, k) to each focus F is aε ≡ 2.236

Latus rectum: intersects hyperbola at ±b2/a ≡ ±4 and also passes through F
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A.2 Rectangular Hyperbola

A rectangular hyperbola is the same as a canonical hyperbola but with a = b, such that the enclosed rectangle
becomes a square. Equation (6) reduces to:

(y − k)2 − (x− h)2 = a2 (7)

-4 -2 2 4 6

-6

-4

-2

2

4

6

(a) Rectangular hyperbola (b) Hyperbola rotated by +45°

Figure 14: Rectangular hyperbola centered at (1,0) and then rotated counterclockwise by 45° to
produce the hyperbola shown in Figure 5.

If we rotate eqn. (7) counterclockwise by 45°, the new coordinates are:

x 7→ x− 1√
2

+
y√
2

and y 7→ −x− 1√
2

+
y√
2

(8)

Substituting into eqn. (7) yields:
2(1− x)y

a2
= 1 (9)

Setting a =
√

2 makes it equivalent to eqn. (2) in Section 3.1.

Remark 6 The relationship between X and R in Little’s law N = XR has the form of a rectilinear hyperbola.
Little’s law is also the basis for eqn. (3).

B PDQ-R Models

The following PDQ models, written in the R language for statistical computing, can be used to generate some of
the response time plots appearing the text.

Listing 1: PDQ-R model of M/M/m queue
# Plo t M/M/m re spon s e t ime f o r CMG MeasureIT p i e c e .
# Created by NJG on Thursday , J u l y 23 , 2009
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l i b r a r y ( pdq )

# PDQ g l o b a l s
s e r v e r s<−c ( 1 , 2 , 4 , 16 , 32 , 64 )
s t ime<−0 .499
node<−”qnode”
work<−”qwork”

f o r (m i n s e r v e r s ) {
a r r i v r a t e<−0
xc<−0
yc<−0

f o r ( i i n 1 : 200 ) {
I n i t ( ”” )

a r r i v r a t e<−a r r i v r a t e + 0 .01
a g gA r r i v a l s<−m∗ a r r i v r a t e
CreateOpen ( work , a g gA r r i v a l s )
CreateMult iNode (m, node , CEN, FCFS)
SetDemand ( node , work , s t ime )

So lve (CANON)
xc [ i ]<−as . double ( a g gA r r i v a l s ∗ s t ime /m)
yc [ i ]<−GetResidenceTime ( node , work ,TRANS) / s t ime

}

i f (m == 1) {
p l o t ( xc , yc , t ype=” l ” , y l im=c ( 0 , 10 ) , lwd=2, x l a b=e x p r e s s i o n ( pa st e ( ” S e r v e r l o ad ” , ( rho ) ) ) ,
y l a b=” S t r e t c h f a c t o r (R/S) ” )
t i t l e ( ”M/M/m Response Time” )
t e x t ( 0 . 1 , 6 , pa st e ( ”m =” , pa st e ( s e r v e r s [ 1 : l e n g t h ( s e r v e r s ) ] , c o l l a p s e=’ , ’ ) ) , ad j=c ( 0 , 0 ) )

a b l i n e ( h=1, c o l = ” l i g h t g r a y ” )
a b l i n e ( v=0.5 , c o l = ” l i g h t g r a y ” )
a b l i n e ( h=2, c o l = ” l i g h t g r a y ” )
a b l i n e ( v=0.75 , c o l = ” l i g h t g r a y ” )
a b l i n e ( h=4, c o l = ” l i g h t g r a y ” )

} e l s e {
l i n e s ( xc , yc , lwd=2)

}
}

Listing 2: PDQ-R model of M/M/1//N queue
# Plo t M/M/1//N re spon s e t ime f o r CMG MeasureIT p i e c e .
# Created by NJG on Wednesday , J u l y 22 , 2009

l i b r a r y ( pdq )

# PDQ g l o b a l s
Nload<−60
t h i n k<−80
s t ime<−2
node<−”qnode”
work<−”qwork”

# R p l o t v e c t o r s
xc<−0
yc<−0

f o r ( n i n 1 : Nload ) {
I n i t ( ”” )

CreateClosed ( work , TERM, as . double ( n ) , t h i n k )
CreateNode ( node , CEN, FCFS)
SetDemand ( node , work , s t ime )

So lve (EXACT)
xc [ n ]<−as . double ( n )
yc [ n ]<−GetResponse (TERM, work )

}

nopt<−GetLoadOpt (TERM, work )
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p l o t ( xc , yc , t ype=” l ” , y l im=c ( 0 , 50 ) , lwd=2, x l a b=”Number o f r e q u e s t s (N) ” , y l a b=”Response t ime R(N) ” )
t i t l e ( ”M/M/1//N Response Time” )
a b l i n e ( a=−th ink , b=st ime , l t y=”dashed ” , c o l=” red ” ) # Rin f
t e x t (55 , 25 , e x p r e s s i o n (R [ i n f i n i t y ] ) )
a b l i n e ( a=−(nopt−4)/ 2 , b=1/ st ime , l t y=”dashed ” , c o l=” b lu e ” ) # con j a x i s
t e x t (55 , 10 , ” Con jugate a x i s ” )
a b l i n e ( a=( t h i n k +4) , b=−st ime , l t y=”dashed ” , c o l=” b lu e ” ) #t r a n s a x i s
t e x t (20 , 30 , ” T ran s v e r s e\ n a x i s ” )
a b l i n e ( st ime , 0 , l t y=”dashed ” , c o l = ” red ” )
t e x t (20 , 0 , e x p r e s s i o n (R [ min ] ) ) # Rmin
t e x t ( nopt+6, 0 , pa st e ( ”Nopt=” , as . numeric ( nopt ) ) )
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