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Possibly Perverse Packet History

Bellcore traces kicked off a “paper-mill” industry c.1994

Persistent burstiness: LRD pkt trains ⇒ BIG queues

FUD: Queueing theory is dead, fractal traffic, power laws,
non-Poisson arrivals, size-dependent service, ...
⇒ Internet (I & II) can’t be modeled!

Multitudinous math: M/G/∞, chaos thy, large devs, ...

Stop the tram! ...

1. Where is LRD being measured? (Rarely discussed)

But see e.g., (Downey 2001)

2. Industry network engineers don’t see it! (cf. SYN flooding)

3. How much should I care? (Never discussed) Only pkt level effects.

Copyright c© 2005 Performance Dynamics July 10, 2005 2



RGT, Power Laws and the Internet—IFORS 2005

1-Pareto, 2-Pareto, . . . ? (Fischer et al. 2004)

With four parameters I can fit an elephant, with five I can make his trunk wiggle. —J. von Neumann
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Motivations

Profs. Shortle and Gross are to blame for this talk ,
Is there a way to decide about n-P power law models?

Multi-parameter (unphysical) models are something I’ve seen
before in computer/networking scalability analysis

Power laws and scaling arise from
Renormalization (semi-)group transformations
⇒ generalized homogeneous functions

If we try to apply RGT as a tool, what happens?
(Not easy ⇒ numerical studies)
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Computer Scalability

Hardware Scalability:

Fix (N) users, vary (p) processors

Software Scalability:

Fix (p) processors, vary (N) users
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Computer Scaling Models I Have Known
(but not necessarily loved)

Scaling Model Parameters Genesis

Sσ(p) = p
1+σ(p−1)

0 ≤ σ < 1 Gene (Amdahl 1967)

Sφ(p) = 1−φp

1−φ
φ . 1 Unknown

Sγ(p) = p− γp(p− 1) 0 ≤ γ < 1 Gunther 1991

Sλ(p) = p
1+σ[(p−1)+λp(p−1)]

0 ≤ σ, λ < 1, (Gunther 1993)

Sα(p) = p(1− α)(p−1) 0 ≤ α < 1 Amdahl Corp. 1999

• Shown that Sφ(p) is unphysical

i.e., contradicts (Coxian) queueing theory (Gunther 2002)

• But Sσ(p) and Sλ(p) are physical

i.e., consistent with queueing theory (Gunther 2004)
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Parametric Scalability Models

In[16]:= AmdahlC@p_, S_, Z_D := BlockA
8Xamd<,

Camd =
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + H S

ÅÅÅÅÅÅÅ
S+Z

L Hp - 1L
;

Return@CamdD;
E

In[20]:= MultipleListPlot@
Table@8p, RepairC@p, 1, 9D<, 8p, 1, 50<D,
Table@8p, AmdahlC@p, 1, 9D<, 8p, 1, 50<D,
PlotStyle -> 8Blue, Red<, PlotLabel Ø "Relative Throughput", LegendSize Ø

80.65, 0.3<, LegendPosition Ø 8.1, -0.3<, AxesLabel -> 8"p", "CHpL"<,
PlotLegend Ø 8"Repair", "Amdahl"<, SymbolShape Ø None, PlotJoined Ø True

D;
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p
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10

CHpL Relative Throughput

Amdahl

Repair

‡ Amdahl Response

In[21]:= AmdahlR@p_, S_, Z_D := BlockA
8Xamd, Ramd<,

Xamd =
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p S + Z

;

Ramd =
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Xamd

- Z;

Return@RamdD;
E

AmdahlRepair.nb 3

 Super-Serial Comparison

The MPF is a one-parameter model with rolloff.

‡ Asymptotic Behaviour

In[23]:= Amx@s_, p_D := p Exp@-s Hp - 1LD;

In[24]:= SS@a_, b_, p_D :=
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + a HHp - 1L + b p Hp - 1LL

;

In[91]:= Plot@8Amd@0.03, pD, Amx@0.03, pD, SS@0.03, 0.01, pD<, 8p, 1, 160<,

PlotStyle -> 8Black, Red, Blue<, PlotLabel Ø "Retrograde Scaling",

PlotLegend Ø 8"Amdahl 1967", "Amdahl Corp", "Gunther 1993"<,

LegendSize Ø 80.95, 0.25<, LegendPosition Ø 8-0.25, 0.05<,

LegendShadow Ø 80, 0<, PlotRange Ø 80, 30<, AxesLabel -> 8"p", "CHpL"<D;
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CHpL Retrograde Scaling

Gunther 1993
Amdahl Corp
Amdahl 1967

2 AmdahlMPF.nb

Xmva(p) =
p

R(p) + Z

Sσ(p) =
p

1 + σ(p− 1)

Sα(p) = p(1− α)(p−1)

Sλ(p) =
p

1 + σ[(p− 1) + λp(p− 1)]
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Amdahl Meets the Repairman (Gunther 2004)

N, Z

S

R(N)

X(N)

CPUs

Shared
memory bus

Repairman Model

Smva(p) =
p(D + Z)

R(p) + Z

where S(p) = X(p)
X(1)

Multiprocessor Model

Ssync(p) =
p(D + Z)

pD + Z

=
p

1 + σ(p− 1)

where σ = D
D+Z
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Load-Dependent Queues (Gunther 2005)

Users
N, Z

M < N

Disks
CPU

FESC

↗

↘

Sλ(p) =
p

1 + σ[(p− 1) + λp(p− 1)]

Sα(p) ' pe−α(p−1) as p→∞

 Super-Serial Comparison

The MPF is a one-parameter model with rolloff.

‡ Asymptotic Behaviour

In[23]:= Amx@s_, p_D := p Exp@-s Hp - 1LD;

In[24]:= SS@a_, b_, p_D :=
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + a HHp - 1L + b p Hp - 1LL

;

In[91]:= Plot@8Amd@0.03, pD, Amx@0.03, pD, SS@0.03, 0.01, pD<, 8p, 1, 160<,

PlotStyle -> 8Black, Red, Blue<, PlotLabel Ø "Retrograde Scaling",

PlotLegend Ø 8"Amdahl 1967", "Amdahl Corp", "Gunther 1993"<,

LegendSize Ø 80.95, 0.25<, LegendPosition Ø 8-0.25, 0.05<,

LegendShadow Ø 80, 0<, PlotRange Ø 80, 30<, AxesLabel -> 8"p", "CHpL"<D;
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2 AmdahlMPF.nb

New observation Sα(p) is ALOHA-like
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ALOHA Network Stabilityü Mean Departures

ABi2@n_, B_, z_D := B Hn - zL Exp@-zD Exp@-B Hn - zLD + z Exp@-zD Exp@-B Hn - zLD;
Plot@ABi2@540ê 100, 0.0007* 100, z ê 20D, 8z, 0, 130<D;
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Plot@
8ABi1@540ê 100, 0.0007 * 100, z ê20D, ABi2@540 ê100, 0.0007 * 100, z ê 20D<, 8z, 0, 130<D;

ü Stability Points

Queueung parameters are defined in the critical region. Critical queue length occurs near Qc ~ 40 (for this set of parameters).

The queue length is non-zero but small below Qc . So we don't have a formal order parameter in the usual sense.
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ALOHA-Stability.nb 2

ü Mean Departures

ABi2@n_, B_, z_D := B Hn - zL Exp@-zD Exp@-B Hn - zLD + z Exp@-zD Exp@-B Hn - zLD;
Plot@ABi2@540ê 100, 0.0007* 100, z ê 20D, 8z, 0, 130<D;
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Plot@
8ABi1@540ê 100, 0.0007 * 100, z ê20D, ABi2@540 ê100, 0.0007 * 100, z ê 20D<, 8z, 0, 130<D;

ü Stability Points

Queueung parameters are defined in the critical region. Critical queue length occurs near Qc ~ 40 (for this set of parameters).

The queue length is non-zero but small below Qc . So we don't have a formal order parameter in the usual sense.
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ALOHA-Stability.nb 2

Plot@DriftABi@540ê 100, 0.0007 * 100, z ê 20D, 8z, 0, 150<D;

20 40 60 80 100 120 140

-0.15

-0.1

-0.05
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0.1

Table@DriftABi@450ê 100, 0.0007 * 100, zê 20D, 8z, 0, 100, 20<D
80.0851165, -0.113486, -0.0720977, -0.0341801, -0.0363617, -0.0696455<

ü Control Function

-‡ DriftABi@n, B, zD „z

-B n z +
B z2
ÅÅÅÅÅÅÅÅÅÅÅ
2

-
‰-B n+H-1+BL z H-1 - B n - z + B zL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-1 + B

ControlABi@n_, B_, z_D := -B n z +
B z2
ÅÅÅÅÅÅÅÅÅÅÅ
2

-
‰-B n+H-1+BL z H-1 - B n - z + B zL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-1 + B

Plot@ControlABi@540 ê100, 0.0007 * 100, z ê20D, 8z, -10, 150<D;
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Percolation Models

What is the RGT for ALOHA? 

Compare with percolation model RGTs. R(p) is a polynomial in p. The roots of the function f(p) = p - R(p) quantify the fixed

points and the critical concentration pc (the non-trivial fixed point).

ALOHA-Stability.nb 4

Plot@DriftABi@540ê 100, 0.0007 * 100, z ê 20D, 8z, 0, 150<D;
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Table@DriftABi@450ê 100, 0.0007 * 100, zê 20D, 8z, 0, 100, 20<D
80.0851165, -0.113486, -0.0720977, -0.0341801, -0.0363617, -0.0696455<

ü Control Function

-‡ DriftABi@n, B, zD „z

-B n z +
B z2
ÅÅÅÅÅÅÅÅÅÅÅ
2

-
‰-B n+H-1+BL z H-1 - B n - z + B zL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-1 + B

ControlABi@n_, B_, z_D := -B n z +
B z2
ÅÅÅÅÅÅÅÅÅÅÅ
2

-
‰-B n+H-1+BL z H-1 - B n - z + B zL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-1 + B

Plot@ControlABi@540 ê100, 0.0007 * 100, z ê20D, 8z, -10, 150<D;
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Percolation Models

What is the RGT for ALOHA? 

Compare with percolation model RGTs. R(p) is a polynomial in p. The roots of the function f(p) = p - R(p) quantify the fixed

points and the critical concentration pc (the non-trivial fixed point).

ALOHA-Stability.nb 4

Kleinrock, Metcalfe, Weiss, Nelson, Gunther, (Ganesh et al. 2004)
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ALOHA as a Queue (Gunther 1990)

Tunneling

Queue length

Optimal 
local

minimum

Congested
global

minimum

Short
average queue

Long
average queue

Internet routers did congest c.1986 → TCP slow-start

Critical behavior → VM, ALOHA universality
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Bellcore Ethernet Measurements

This case seems to have been forgotten! (since c.1989)DRAFT

Workstn server
File

server
File

PC Workstn Workstn server
File

server
File. . . . . . Mini

CCI

Bellcore and 
Rest of 

Internet

. . . . . .
VAX

(router)
MiniWorkstnWorkstn

BridgeEthernet Monitor

Ethernet segment

Figure 2.2.1. Network from which the August and October 1989 measurements were taken.

34

DRAFT

log10(d)

log
10
(r/
s)

0 1 2 3 4 5

0
1

2
3

4

Figure 4.2.1 (b). Pox plot of R/S for sequence AUG89.MB. The plot tightly clusters around a straight line whose
asymptotic slope clearly lies between the slopes 0.5 (lower dotted line) and 1.0 (upper dotted line) and is readily
estimated (using the "brushed" points) to be about 0.79.

39

FUD has been how to model the Internet (Park & Willinger 2000)

Fancy Internet models had better include Ethernet
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Fast Switched Ethernet

Ethernet 802.3 (bus type) is not unstable in the sense of ALOHA

Nor is switched ethernet 802.3u (100Base-T) & 802.3a,b (1000Base-T) 22

N 

L B E B I S Q 

Figure 10. This is a sketch of our model. Requests arrive at
the left. Their sizes L are measured in bytes and are distributed
according to a Cauchy or exponential distribution. Each request
is then packaged into blocks (frames) of size 1518 bytes or less.
The time between requests E is distributed according to one of our
four choices. The server N emits each block after a service time
corresponding to the network speed. The minimum time between
blocks after service is the inter-frame gap I of twelve bytes. The
time between output blocks can be larger than I, namely S if the
server was idle. The queue-length Q is measured as the number of
blocks awaiting service.

To parametrise the model we used the log file of the departmental webserver

covering the period from 15:45 to 16:45 on 10 April 2003. As the reader will

recall, we have already presented an analysis of the traffic going through the

Black Diamond router. Figure 9 shows the request size distribution for that

period and compares it to a Cauchy distribution with s = 4100. If we truncate

this distribution at 34 Mbytes we get a mean of 23.5 kbytes per request and a

standard deviation of 290 kbytes. This compares to a mean 23.5 kbytes and a

standard deviation of 554 kbytes with the measurements. We chose this value of s

as it fits the mean request size extremely well and produces a standard deviation

that is in the same order of magnitude as the observed one. Unfortunately we do

not have access to all the logfiles of the departmental webserver. Also the logfiles

tell us only when a particular request has been fulfilled, not when it arrived. And

to make matters worse this is only logged down to the full second. In order to

gain more knowledge about the arrival process of requests we have looked into

the tcpdump files collected on the webserver and the departmental router. They

(Harrison et al. 2004) measure pkts on 1000Base-T network

Trace incoming/outgoing pkts near NIC of web server

1. Arrivals are not Pareto distributed

2. Packetization process is key (Cauchy-M/G/1)

3. LRD time correlations have 1/f power spectrum

4. Even with Poisson arrivals!

Copyright c© 2005 Performance Dynamics July 10, 2005 13
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Ethernet Arrivals (Harrison et al. 2004)

Arrivals are not power law!

24

Beyond 11.592µseconds the inter-event times correspond to times where the

queue empties and hence includes a request inter-event time. Therefore it is not

surprising to see that the simulation models produce graphs that resemble the

input process in that region.

Superficially the real traffic follows a similar trend with, interestingly, a tail

that appears not to be consistent with a heavy-tailed distribution. Quantitatively,

however, it is evidently not a particularly accurate model of the departure process.
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deterministic arrivals + cauchy service

Measurement

Figure 11. Plot comparing the inter event times of the simulation
model and the real traffic.

What is particularly interesting, however, is the nature of the power spectra of

the departure process for each simulated process combination simulated. These

are shown in Figure 12. Four of the five simulation experiments assumed Cauchy

(i.e. heavy-tailed) file size distributions. For each of these there is clear evidence
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Ethernet Throughput (Harrison et al. 2004)

Departures are power law with ' 1/f spectral density

25

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-3 -2 -1  0  1  2  3

lo
g1

0(
Po

we
r)

log10(Frequency in Hz)

cauchy arrivals + exponential service
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deterministic arrivals + cauchy service
Measurement

Figure 12. The plot compares the power spectra of the departure
process of the simulation for different network speeds with that of
the real traffic. The real traffic was measured with tcpdump on 10
April 2003 between 15:45 and 16:45.

of a power law. Furthermore, the nature of the power spectra are affected very

little by the arrival process. The additional experiment assumed exponentially

distributed file sizes and for this we see no power law at all. The only way to

introduce a power law in this case is to use unreasonable parameters for the max-

imum inter arrival times of the requests, i.e. assume that there tens of minutes

between requests. By and large the simulated traffic is similar to that of the real

system, although shifted to the right. Shifts to the right are caused by increasing

network speed as the departure events become more frequent and higher x-values

correspond to higher frequencies. This suggests that the perceived network of the
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Flicker Noise

Studied by Schottky in 1918 for thermionic tubes, circuits, etc.

(see figures 4 and 5).
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1/f2

log λ1 log λ2

Figure 4: schematic shape of the spectral density (4). There are three characteristic regions: a
white noise region at very low frequency, a 1/f noise intermediate region and a 1/f2 region at
high frequency.
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Figure 5: spectral density (arbitrary units) obtained from the superposition of 10000 relaxation
processes with decay rates uniformly distributed and equally spaced between 1 and 1000
(arbitrary frequency units). The straight lines represent a 1/f  (red) and a 1/f2 (blue) spectral
density.

How stable is this result? Is it still possible to obtain similar spectra changing the assumptions to
fit reasonable physical needs?
These questions can at least partly be answered with a direct numerical simulation: figure 6
shows the result for a uniform random distribution of the relaxation rates, and it is clear that the

Power spectrum S(f) is

Fourier transform of corre-

lation function C(τ).

If C(τ) ∼ τα−1 then

S(f) ∼ 1/fα where

α → 0: white noise

α → 1: flicker noise

α → 2: Brownian process

• Still no single (universal) model of 1/f noise (yet)

• Validity of “sandpile model” (Bak et al. 1987) now questioned
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Power Law Impulse Filter

Plot@foo, 8t, 0, 5<, PlotRange Ø 80, 2<D;

1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

glob = „
k=1

100
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHt - GenExp@kDL1ê2  UnitStep@t - kD;

Plot@glob, 8t, 1, 50<, PlotRange Ø 80, Automatic<D;
Plot::plnr :  glob is not a machine-size real number at t = 1.0000020416666666` . More…

Plot::plnr :  glob is not a machine-size real number at t = 1.239088116867617` . More…

Plot::plnr :  glob is not a machine-size real number at t = 1.2954359368538317` . More…

General::stop :  Further output of Plot::plnr will be suppressed during this calculation . More…

10 20 30 40 50

1

2

3

4

5

6

7

bar = „
k=0

¶

Â
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHt - kL1ê2  UnitStep@t - kD

UnitStep@tD JZetaA 1
ÅÅÅÅ
2
, -tE - ZetaA 1

ÅÅÅÅ
2
, 1 - t + Floor@tDEN

ShotNoise.nb 4

Simple sawtooth waveform

Plot@bar, 8t, 0, 10<D;
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2.5
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PlotA‚
k=0

¶

HUnitStep@t - kDL, 8t, 0, 3<, PlotRange Ø 80, Automatic<E;

0.5 1 1.5 2 2.5 3

0.5

1

1.5
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3

pulseSeq = Sort@Table@GenExp@1D, 8k, 0, 5<DD
80.532294, 0.61971, 0.756259, 1.01998, 1.14646, 1.79214<

pulseSeqP1T
0.532294

goo = „
k=0

¶

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHt - pulseSeqPk + 1TL1ê2

Part::pspec  :  Part specification 1 + K$19653 is neither an integer nor a list of integers. More…

Part::pspec  :  Part specification 1 + k is neither an integer nor a list of integers. More…

Part::pspec  :  Part specification 1 + K$19658 is neither an integer nor a list of integers. More…

General::stop :  Further output of Part::pspec will be suppressed during this calculation . More…

‚
k=0

¶

1 ë H,Ht - 80.532294, 0.61971, 0.756259, 1.01998, 1.14646, 1.79214<P1 + kTLL

ShotNoise.nb 5

Impulse function h(t) = 1/tβ

IntegrateA 1
ÅÅÅÅÅÅÅ
tb

 ‰-2 p Â f t, 8t, A, B<, Assumptions Ø 8A > 0, B > 0<E
HÂ fL-1+b H2 pL-1+b HGamma@1 - b, 2 Â A f pD - Gamma@1 - b, 2 Â B f pDL

LogLogPlotAAbs@Gamma@1ê 2D - Gamma@1ê 2, 2 Â p f BDD2  
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 p f

ê. B Ø 1000, 8f, 10-6, 100<E;

0.02 0.05 0.1 0.2 0.5 1

1

2

5
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20
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ü Convolution

foo = ‚
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ShotNoise.nb 3

S(f) = 1/fα; α = 2(1− β)

IntegrateA 1
ÅÅÅÅÅÅÅ
tb

 ‰-2 p Â f t, 8t, A, B<, Assumptions Ø 8A > 0, B > 0<E
HÂ fL-1+b H2 pL-1+b HGamma@1 - b, 2 Â A f pD - Gamma@1 - b, 2 Â B f pDL

LogLogPlotAAbs@Gamma@1ê 2D - Gamma@1ê 2, 2 Â p f BDD2  
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ShotNoise.nb 3

S(f) output with cutoff
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Power Law Queue
22

N 

L B E B I S Q 

Figure 10. This is a sketch of our model. Requests arrive at
the left. Their sizes L are measured in bytes and are distributed
according to a Cauchy or exponential distribution. Each request
is then packaged into blocks (frames) of size 1518 bytes or less.
The time between requests E is distributed according to one of our
four choices. The server N emits each block after a service time
corresponding to the network speed. The minimum time between
blocks after service is the inter-frame gap I of twelve bytes. The
time between output blocks can be larger than I, namely S if the
server was idle. The queue-length Q is measured as the number of
blocks awaiting service.

To parametrise the model we used the log file of the departmental webserver

covering the period from 15:45 to 16:45 on 10 April 2003. As the reader will

recall, we have already presented an analysis of the traffic going through the

Black Diamond router. Figure 9 shows the request size distribution for that

period and compares it to a Cauchy distribution with s = 4100. If we truncate

this distribution at 34 Mbytes we get a mean of 23.5 kbytes per request and a

standard deviation of 290 kbytes. This compares to a mean 23.5 kbytes and a

standard deviation of 554 kbytes with the measurements. We chose this value of s

as it fits the mean request size extremely well and produces a standard deviation

that is in the same order of magnitude as the observed one. Unfortunately we do

not have access to all the logfiles of the departmental webserver. Also the logfiles

tell us only when a particular request has been fulfilled, not when it arrived. And

to make matters worse this is only logged down to the full second. In order to

gain more knowledge about the arrival process of requests we have looked into

the tcpdump files collected on the webserver and the departmental router. They

• Poisson arrivals with rate λ

• Service distribution ∼ t−
1
2 (file size-dept.)

((Harrison et al. 2004) use Cauchy size dsn. ∼ 1/x2)

• Output (network link) distribution ∼ 1/fα with (α = 1)

• Seems to account for ethernet (Needs more investigation)

• That still leaves the Internet ...
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Renormalization Group Therapy
(for Recovering Physicists)

• RGT is mathematical group with no inverse
Rescaling ⇒ averaging or filtering. Lose information

Physics from group invariants e.g., rotational symmetry group →
conservation of angular momentum

• RGT developed by physicists to study connection between
local and global system dynamics. (cf. ALOHA)
Connection occurs when system correlations go “critical”

(Physics-speak for fluctuations occur on all scales—length, time)

System characterization goes singular at critical point

Singular behavior characterized by a power law (Stanley 1999)

• RGT produces power law solutions with the added capability
of characterizing the singularity at fixed point of RGT
(sometimes)

Copyright c© 2005 Performance Dynamics July 10, 2005 19
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Site Percolation Models

Purely geometric arguments (Almost physics-free!) ,
Phase transitions and power laws

1 Phase transitions

Consider the percolation model:

Is there a path across the lattice from one side to the other? Clearly if is very low there is not. If it’s
high there is. Somewhere in between a path appears.

Let be the probability that a path exists across a system of sites when a fraction of the
sites are filled in. Here’s what looks like:

1

Critical concentration pc?

Phase transitions and power laws

1 Phase transitions

Consider the percolation model:

Is there a path across the lattice from one side to the other? Clearly if is very low there is not. If it’s
high there is. Somewhere in between a path appears.

Let be the probability that a path exists across a system of sites when a fraction of the
sites are filled in. Here’s what looks like:

1

First conducting (porous) path

2 Scaling theory

All phase transitions have an order parameter, which is a quantity which is zero on one side of the
transition and non-zero on the other:

system independent variable order parameter
percolation site occupation probability fractional size of spanning cluster
magnet temperature magnetization
superconductor temperature fraction of electrons in Bose condensate
disease reproductive ratio fraction of population affected by average outbreak
evolution mutation rate fraction of population at fitness optimum
random graph mean degree fractional size of giant component
satisfiability ratio of variables to clauses fraction of problems satisfiable

A continuous transition in one in which the order parameter varies continuously as we go through the
transition point. Example, percolation:
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It can have infinite gradient at the transition, and often does, but it cannot be discontinuous.

At finite system sizes the transition is not instantaneous.
Only in the limit of large system size do we get a sharp step
at the transition.

If one calculates the average cluster size, this must diverge at the transition. This divergence is a
classic example of a critical phenomenon:

4

Order parameter |p− pc|
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We define to be the density of clusters of size at occupation fraction , excluding the spanning
clusters. It must have the scaling form

(1)

Important stuff: Consider the following scaling argument. If we change the scale on which we
measure areas on our lattice by a factor of , then all clusters change size according to . Of
course, the physics of the system hasn’t changed, only how we measure it, so this change of variables
cannot change the distribution , except by a numerical factor to keep the normalization correct.
The argument of doesn’t change anyway, because and both change by the same factor .
But the argument of does change. Thus must satisfy

(2)

where is the numerical factor, which can depend on but not . Let us choose the normalization
of so that . Then, setting above we have

(3)

for all and hence and are the same function. Thus

(4)

To solve this equation, we take the derivative with respect to :

(5)

then set to get
(6)

5

Correlation length ξ ∼ 1
|p−pc|ν
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Spatial Renormalization

3 Renormalization group

Calculating the properties of systems at or near the critical point was one of the abiding problems of
twentieth century physics, until it was solved beautifully by Ken Wilson and Michael Fisher in the
1970s with their invention of the renormalization group (RG). Here’s how you would use the RG to
calculate the position of the phase transition in percolation.

3.1 RG for percolation

Here is a simple example of the (real-space) renormalization group for our percolation problem.

Close to the critical point, the cluster size distribution becomes power-law, and averages over
the distribution are dominated by the large- contributions, i.e., by large clusters.

The large clusters are invariant when we rescale the system.

Simple rescaling transformation:

7

Local transformation rules

3 Renormalization group

Calculating the properties of systems at or near the critical point was one of the abiding problems of
twentieth century physics, until it was solved beautifully by Ken Wilson and Michael Fisher in the
1970s with their invention of the renormalization group (RG). Here’s how you would use the RG to
calculate the position of the phase transition in percolation.

3.1 RG for percolation

Here is a simple example of the (real-space) renormalization group for our percolation problem.

Close to the critical point, the cluster size distribution becomes power-law, and averages over
the distribution are dominated by the large- contributions, i.e., by large clusters.

The large clusters are invariant when we rescale the system.

Simple rescaling transformation:

7

Block re-scaling transformations

Local fluctuations averaged out under RGT (low-pass filter)

Want fixed points of the re-scaling transformation

Lattice geometry invariant at fixed point p∗ ⇒ LRD!

Compute power law exponents near p∗
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Example 1: Linear Geometry (d = 1)

Up1 = -‡ HRGp2 - pL „p

p2
ÅÅÅÅÅÅÅ
2

-
p3
ÅÅÅÅÅÅÅ
3

The extension of the abscissa to values outside the range [0,1] is purely for the purposes of visualizing the form of the control

function. 

Plot@Up1, 8p, -0.25, 1.25<, AxesLabel Ø 8"p", "Up1"<, GridLines Ø 881<, None<D;
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p
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Up1

Plot@8p, RGp2<, 8p, 0, 1<, AxesLabel Ø 8"p", None<D;
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ü Triangle Sites (d = 2)

The RGT generator is: 

RGp3 = p3 + 3 p2  H1 - pL;
Compare the following plot to Fig. 7.8 of Jens Feder "Fractals" on p.115. 

Percolation.nb 2

R(p) = p2 (taken pair-wise)

Up1 = -‡ HRGp2 - pL „p

p2
ÅÅÅÅÅÅÅ
2

-
p3
ÅÅÅÅÅÅÅ
3

The extension of the abscissa to values outside the range [0,1] is purely for the purposes of visualizing the form of the control

function. 

Plot@Up1, 8p, -0.25, 1.25<, AxesLabel Ø 8"p", "Up1"<, GridLines Ø 881<, None<D;
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Plot@8p, RGp2<, 8p, 0, 1<, AxesLabel Ø 8"p", None<D;
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ü Triangle Sites (d = 2)

The RGT generator is: 

RGp3 = p3 + 3 p2  H1 - pL;
Compare the following plot to Fig. 7.8 of Jens Feder "Fractals" on p.115. 

Percolation.nb 2

U(p) = p2

2
− p3

3

R(p) is the RG transformation (from geometry)

Fixed points p∗ occur where R(p) intersects p

In this case, they’re trivial: p∗ = 1 (unstable), p∗ = 0 (stable)

U(p) is the control function (maxima and minima)
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Example 2: 2 Lattice (d = 2)

Up4 = -‡ HRGp4 - pL „p

p2
ÅÅÅÅÅÅÅ
2

-
2 p3
ÅÅÅÅÅÅÅÅÅÅÅ
3

+
p5
ÅÅÅÅÅÅÅ
5

Plot@Up4, 8p, -0.5, 1.5<, AxesLabel Ø 8"p", "Up4"<,
GridLines Ø 880.6180339887498948`, 1<, None<D;
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This shows that the propensity is for the system not to make superclusters. 

The following is a plot of the RGT generator. 

Plot@8p, RGp4<, 8p, 0, 1<, AxesLabel Ø 8"p", None<,
GridLines Ø 880.6180339887498948`, 1<, None<D;
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This looks reminiscent of Kelly's "random alternative routing" model. See Fig.1 in my Perforfmance'90 paper. 

RGT Flows

ü Triangular Lattice Transformations

ü Graphics Primitives

Percolation.nb 5

R(p) = 2p2 − p4

Up4 = -‡ HRGp4 - pL „p

p2
ÅÅÅÅÅÅÅ
2

-
2 p3
ÅÅÅÅÅÅÅÅÅÅÅ
3

+
p5
ÅÅÅÅÅÅÅ
5

Plot@Up4, 8p, -0.5, 1.5<, AxesLabel Ø 8"p", "Up4"<,
GridLines Ø 880.6180339887498948`, 1<, None<D;
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This shows that the propensity is for the system not to make superclusters. 

The following is a plot of the RGT generator. 

Plot@8p, RGp4<, 8p, 0, 1<, AxesLabel Ø 8"p", None<,
GridLines Ø 880.6180339887498948`, 1<, None<D;
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This looks reminiscent of Kelly's "random alternative routing" model. See Fig.1 in my Perforfmance'90 paper. 

RGT Flows

ü Triangular Lattice Transformations

ü Graphics Primitives

Percolation.nb 5

U(p) = p2

2
− 2p3

3
+ p5

5

Fixed points: 0, 0.618034, and 1 (numerically)

cf. ALOHA stability
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Example 3: ∆ Lattice (d = 2)

Plot@8p, RGp3<, 8p, 0, 1<, AxesLabel Ø 8"p", None<D;
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ü Square Sites  (d = 2)

RGp4 = 2 p2 - p4;

Plot@RGp4 - p, 8p, 0, 1<, AxesLabel Ø 8"p", None<D;
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Solve for pc:

Solve@RGp4 - p ã 0, pD
98p Ø 0<, 8p Ø 1<, 9p Ø

1
ÅÅÅÅ
2

H-1 -
è!!!
5 L=, 9p Ø

1
ÅÅÅÅ
2

H-1 +
è!!!
5 L==

which is the Golden ratio. The numerical solution is:

NSolve@RGp4 - p ã 0, pD
88p Ø -1.61803<, 8p Ø 0.<, 8p Ø 0.618034<, 8p Ø 1.<<

The empirical value is pc = 0.593 (See table in Ziman on p.375). 

We can now determine he corresponding "potential" or control function. 

Percolation.nb 4

R(p) = p3 − 3p2(1− p)

Plot@RGp3 - p, 8p, 0, 1<, AxesLabel Ø 8"p", None<D;
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Evaluate the critical points.

NSolve@RGp3 - p ã 0, pD
88p Ø 0.<, 8p Ø 0.5<, 8p Ø 1.<<

The corresponding "potential" or control function (not usually discussed) looks like this:

Up3 = -‡ HRGp3 - pL „p

p2
ÅÅÅÅÅÅÅ
2

- p3 +
p4
ÅÅÅÅÅÅÅ
2

Plot@Up3, 8p, -0.5, 1.5<, AxesLabel Ø 8"p", "Up3"<, GridLines Ø 880.5, 1<, None<D;
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Which shows that the system is exactly bistable. 

The following is a plot of the RGT generator. 

Percolation.nb 3

U(p) = p2

2
− p3 + p4

2

Fixed points p∗: 0, 0.5, and 1 (algebraically)

Use this (“simple”) example to see how power law exponents for
correlation length can be computed from RGT
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Critical Exponents for ∆ Latticeü Graphics Output

In[781]:=

Show@tr1, tr2, tr3, tr4, tr5, tr6, trX, dimVertical, dimHoriz1, dimHoriz2,

cdim, Cdim, H*AxesØTrue,*L AspectRatio Ø Automatic, PlotRange Ø AllD;

b

b
è!!!
3

ü RGT Sequences

In[330]:=

RGT3@p_D = p3 + 3 p2  H1 - pL;
In[552]:=

RGT3Sequence@p_D := Module@8pk = p, seq = 8<<,
seq = Append@seq, pkD;
For@i = 1, i < 10,

pk = RGT3@pkD;
If@pk < 1 && pk > 10^H-6L, seq = Append@seq, pkDD;
i++D;
Return@seqD;

D
In[564]:=

seq35 = RGT3Sequence@0.35D;
In[562]:=

seq45 = RGT3Sequence@0.45D;
In[560]:=

seq49 = RGT3Sequence@0.49D;
In[555]:=

seq50 = RGT3Sequence@0.50D;
In[556]:=

seq51 = RGT3Sequence@0.51D;
In[557]:=

seq55 = RGT3Sequence@0.55D;

Percolation.nb 6

Geometry of re-scaling to b/
√

3

In[567]:=

seq65 = RGT3Sequence@0.65D;
In[570]:=

MultipleListPlot@seq35, seq45, seq49, seq50, seq51, seq55, seq65,

PlotJoined Ø True, GridLines Ø 8None, 80.5, 1<<, AxesLabel Ø 8"k", "RkHpL"<D;
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Critical Exponents

The following comes from Jens Feder's book p.123 for tranglular lattice with vertex degree c = 3 (coordination number). See

also Stanely's 1999 paper (Rev Mod Phys) for the d = 1 case. 

ü Triangle Sites (d = 2, c = 3)

Now expand the RGT generator as a Taylor series about pc and only keep terms linear in  (p - pc):

Simplify@Series@RGp3, 8p, pc, 1<DD
H3 - 2 pcL pc2 - 6 HH-1 + pcL pcL Hp - pcL + O@p - pcD2

Note that the 2nd term is identical to derivative in a Taylor expansion:

L = !p RGp3

6 H1 - pL p

evaluated at the critical point pc = 0.5 gives: 

L = !p RGp3 ê. p Ø 1 ê 2
3
ÅÅÅÅ
2

Which agrees with Feder eqn.(7.25).

Critical exponent n for the correlation length is:

Percolation.nb 7

RGT flows near p∗ = 1
2
≡ pc

R(p) is linear in (p− pc) near critical pt. Taylor expand:

p′ = pc − 6pc(pc − 1)(p− pc) + O(p− pc)2

where p′ is the concentration on the rescaled lattice
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Critical Exponent for Correlation Length

2nd term in p′ contains Taylor series derivative:

Λ = ∂pR(p) = 6(1− p)p

˛̨̨̨
p= 1

2

=
3

2

Rescaled correlation length: ξ′ = ξ(p′) = ξ(p)/b

ξ is a homogeneous function of (p− pc):

ξ(Λ× |p− pc|) = ξ(|p− pc|)/b

satisfied by power law ξ = |p− pc|−ν . Hence:

Λ−ν |p− pc|−ν = |p− pc|−ν/b

and solving for the exponent ν with b =
√

3:

ν =
ln(
√

3)

ln(3/2)
= 1.35476

Empirical value is ν = 4
3

= 1.3333
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RG Theory of FARIMA Systems

Conventional ARIMA(0, 1, 0) → random walk process
ARIMA(0, d, 0) with fractional difference d ∈ (0, 1

2 ]
Fractional ARIMA → S(f) ∼ f−2d (Hosking 1981)

RGT generatorPlot@8RGfar1, a1<, 8a1, 0, 1<, GridLines Ø 881<, None<, AxesLabel Ø 8"a1", None<D;
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Plot@8RGfar1 - a1<, 8a1, 0, 1<, GridLines Ø 880.585786, 1<, None<, AxesLabel Ø 8"a1", None<D;
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Ufar1 = -‡ HRGfar1 - a1L „a1

è!!!
2 a1 +

a1
2

ÅÅÅÅÅÅÅÅÅ
2

+ 2
è!!!
2 Log@-2 + a1D

PlotAè!!!!
2 a1 +

a12

ÅÅÅÅÅÅÅÅÅ
2

+ 2
è!!!!
2 Log@Abs@-2 + a1DD, 8a1, -0.5, 1<,

GridLines Ø 880.585786, 1<, None<, AxesLabel Ø 8"a1", "Ufar1"<E;
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RG_FARmodel.nb 6

R(a1, d) = 4a1
2−a1

2−(d+1)

RGT flows

SolveAA 1-Hd+1L ã
22

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 - a1

 A 2-Hd+1L, a1E
88a1 Ø 21-d H-1 + 2dL<<

FPa1 = Simplify@21-d H-1 + 2dLD
2 - 21-d

FPa1 ê. d Ø 0.5

0.585786

RGFAR@a1_, d_D :=
4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 - a1

 2-Hd+1L  a1;

RGFARSequence@a_D := Module@8ak = a, seq = 8<<,
seq = Append@seq, akD;
For@i = 1, i < 10, i++;

ak = RGFAR@ak, 1 ê 2D;
seq = Append@seq, akD;

D;
Return@seqD;

D
seq57 = RGFARSequence@0.57D;
seq58 = RGFARSequence@0.58D;
seq59 = RGFARSequence@0.59D;
seq60 = RGFARSequence@0.60D;
MultipleListPlot@seq57, seq58, seq59, seq60, PlotJoined Ø True,

GridLines Ø 8None, 80.5857864376269049<<, PlotRange Ø 880, 10<, 80.4, 0.8<<,
AxesLabel Ø 8"k", "RkHa1L"<D;
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RGfar1 =
4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 - a1

 2-Hd+1L  a1 ê. d Ø 1 ê2
è!!!
2 a1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 - a1

RG_FARmodel.nb 5

Stable fixed point a∗1

Fixed point: a∗1 = 2(2− 2−d)|d= 1
2

= 0.585786
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RGT and Pareto
(Back to the future)

From: Dr. Neil Gunther

Sent: Monday, May 24, 2004 11:08 PM

To: Fischer, Martin J.

Subject: FW: CORS follow up to MC25.2

Dear Dr. Fischer,

I enjoyed your presentation MC25.2 at CORS ... I may have something to offer

regarding your question about the reduction of variance in the 2-Pareto model.

Fischer et al. NJG Conjecture

If X is 1-P distributed r.v., then X → Z is an affine transformation

Z = βX + k is a 3-P distributed r.v. Affine group > RG

“Stretched” by β β: dilatation transf. (RG invariant)

“Shifted” by k k: is a translation (not RG invariant)

Stretching does not change the CoV RGT preserves ratio CoV = σ2/µ2

Given α, can get any µ and σ2 Not from RGT. Only 1-P satisfies RGT
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Conclusions (my unfunded research)

• Has Internet LRD phenomenon been oversold? (Ethernet?)

• RTG → physical power laws (from critical dynamics)

• Unstable ALOHA from load-dept. queueing fixed points

• Poisson input Ethernet packetization → 1/f LRD

• RGT for FARIMA models of 1/f LRD → fixed points

May explain lack of observable Internet impact (critical dynamics)

Very localized on Internet (not backbones or WANs)

• Which Pareto is physical?

cf. unphysical multi-parametric scalability models

1-P (F̄ (x) ∼ 1/xα) is RGT invariant (cf. S(f) ∼ 1/fα)

• Plenty of cleanup to do ...
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