(Numerical) Investigations into Physical Power-law Models of Internet Traffic Using the Renormalization Group

IFORS Triennial Conference
Honolulu, HI, July 11–15, 2005

Neil Gunther
Performance Dynamics CompanySM
Castro Valley, California
www.perfdynamics.com
Possibly Perverse Packet History

Bellcore traces kicked off a “paper-mill” industry c.1994
Persistent burstiness: LRD pkt trains \Rightarrow BIG queues
FUD: Queueing theory is dead, fractal traffic, power laws, non-Poisson arrivals, size-dependent service, ...
\Rightarrow Internet (I & II) can’t be modeled!
Multitudinous math: $M/G/\infty$, chaos thy, large devs, ...

Stop the tram! ...

1. Where is LRD being measured? (Rarely discussed)
 But see e.g., (Downey 2001)
2. Industry network engineers don’t see it! (cf. SYN flooding)
3. How much should I care? (Never discussed) Only pkt level effects.
1-Pareto, 2-Pareto, . . . ? (Fischer et al. 2004)

With four parameters I can fit an elephant, with five I can make his trunk wiggle. —J. von Neumann

<table>
<thead>
<tr>
<th>Type</th>
<th>$\bar{F}(x)$</th>
<th>$f(x)$</th>
<th>Domain</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-P</td>
<td>$\left(\frac{\beta}{\beta-k+x}\right)^{\alpha}$</td>
<td>$\frac{\alpha}{k} \left(\frac{k}{\beta-k+x}\right)^{1+\alpha}$</td>
<td>$x \geq k$</td>
<td>$\alpha, \beta > 0, k \geq 0$</td>
</tr>
<tr>
<td>2-P</td>
<td>$\left(\frac{k}{x}\right)^{\alpha}$</td>
<td>$\frac{\alpha k^{\alpha}}{x^{1+\alpha}}$</td>
<td>$x \geq k$</td>
<td>$\alpha > 0, \beta = k > 0$</td>
</tr>
<tr>
<td>1-P</td>
<td>$\frac{1}{(1+x)^{\alpha}}$</td>
<td>$\frac{\alpha}{(1+x)^{1+\alpha}}$</td>
<td>$x \geq 0$</td>
<td>$\alpha > 0, \beta = 1, k = 0$</td>
</tr>
</tbody>
</table>

With α (shape), β (scale), k (location). Conventional choice is 2-P:

$$F(k, \alpha, x) = 1 - \left(\frac{k}{x}\right)^{\alpha}$$

$$f(k, \alpha, x) = \frac{\alpha k^{\alpha}}{x^{1+\alpha}} \equiv dF(x)/dx$$

$$\bar{F}(k, \alpha, x) \equiv 1 - F(x) = \left(\frac{k}{x}\right)^{\alpha}$$
Motivations

Profs. Shortle and Gross are to blame for this talk 😊

Is there a way to decide about n-P power law models?

Multi-parameter (unphysical) models are something I’ve seen before in computer/networking scalability analysis

Power laws and scaling arise from

Renormalization (semi-)group transformations

⇒ generalized homogeneous functions

If we try to apply RGT as a tool, what happens?
(Not easy ⇒ numerical studies)
Computer Scalability

Hardware Scalability:
Fix \((N) \) users, vary \((p) \) processors

Software Scalability:
Fix \((p) \) processors, vary \((N) \) users
Computer Scaling Models I Have Known

(but not necessarily loved)

<table>
<thead>
<tr>
<th>Scaling Model</th>
<th>Parameters</th>
<th>Genesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_\sigma(p) = \frac{p}{1+\sigma(p-1)}$</td>
<td>$0 \leq \sigma < 1$</td>
<td>Gene (Amdahl 1967)</td>
</tr>
<tr>
<td>$S_\phi(p) = \frac{1-\phi^p}{1-\phi}$</td>
<td>$\phi \lesssim 1$</td>
<td>Unknown</td>
</tr>
<tr>
<td>$S_\gamma(p) = p - \gamma p(p - 1)$</td>
<td>$0 \leq \gamma < 1$</td>
<td>Gunther 1991</td>
</tr>
<tr>
<td>$S_\lambda(p) = \frac{p}{1+\sigma[(p-1)+\lambda p(p-1)]}$</td>
<td>$0 \leq \sigma, \lambda < 1$, \text{ (Gunther 1993)}</td>
<td></td>
</tr>
<tr>
<td>$S_\alpha(p) = p(1 - \alpha)^{(p-1)}$</td>
<td>$0 \leq \alpha < 1$</td>
<td>Amdahl Corp. 1999</td>
</tr>
</tbody>
</table>

- Shown that $S_\phi(p)$ is **unphysical**
 - i.e., contradicts (Coxian) queueing theory (Gunther 2002)
- But $S_\sigma(p)$ and $S_\lambda(p)$ are **physical**
 - i.e., consistent with queueing theory (Gunther 2004)
Parametric Scalability Models

\[X_{mva}(p) = \frac{p}{R(p) + Z} \]

\[S_\sigma(p) = \frac{p}{1 + \sigma(p - 1)} \]

\[S_\lambda(p) = \frac{p}{1 + \sigma[(p - 1) + \lambda(p - 1)]} \]
Amdahl Meets the Repairman (Gunther 2004)

Repairman Model

\[
S_{mva}(p) = \frac{p(D + Z)}{R(p) + Z}
\]

where \(S(p) = \frac{X(p)}{X(1)} \)

Multiprocessor Model

\[
S_{sync}(p) = \frac{p(D + Z)}{pD + Z} = \frac{p}{1 + \sigma(p - 1)}
\]

where \(\sigma = \frac{D}{D + Z} \)
Load-Dependent Queues (Gunther 2005)

\[S_\lambda(p) = \frac{p}{1 + \sigma[(p - 1) + \lambda p(p - 1)]} \]

\[S_\alpha(p) \sim p e^{-\alpha(p-1)} \text{ as } p \to \infty \]

New observation \(S_\alpha(p) \) is ALOHA-like.
ALOHA Network Stability

Kleinrock, Metcalfe, Weiss, Nelson, Gunther, (Ganesh et al. 2004)
ALOHA as a Queue (Gunther 1990)

Internet routers did congest c.1986 → TCP slow-start
Critical behavior → VM, ALOHA universality
Bellcore Ethernet Measurements

This case seems to have been forgotten! (since c.1989)

FUD has been how to model the Internet (Park & Willinger 2000)
Fancy Internet models had better include Ethernet
Fast Switched Ethernet

Ethernet 802.3 (bus type) is not unstable in the sense of ALOHA.
Nor is switched ethernet 802.3u (100Base-T) & 802.3a,b (1000Base-T)

(Harrison et al. 2004) measure pkts on 1000Base-T network
Trace incoming/outgoing pkts near NIC of web server

1. Arrivals are not Pareto distributed
2. Packetization process is key (Cauchy-M/G/1)
3. LRD time correlations have 1/f power spectrum
4. Even with Poisson arrivals!
Ethernet Arrivals (Harrison et al. 2004)

Arrivals are **not** power law!

![Plot comparing the inter-event times of the simulation model and the real traffic.](chart.png)

Beyond 11.592 µseconds, the inter-event times correspond to times where the queue empties and hence includes a request. There is no tail that appears to be consistent with a heavy-tailed distribution. Quantitatively, however, it is evident that the model is not particularly accurate of the departure processes.
Ethernet Throughput (Harrison et al. 2004)

Departures are power law with $\sim 1/f$ spectral density
Flicker Noise

Studied by Schottky in 1918 for thermionic tubes, circuits, etc.

Power spectrum $S(f)$ is Fourier transform of correlation function $C(\tau)$. If $C(\tau) \sim \tau^{\alpha-1}$ then $S(f) \sim 1/f^\alpha$ where

- $\alpha \to 0$: white noise
- $\alpha \to 1$: flicker noise
- $\alpha \to 2$: Brownian process

- Still no single (universal) model of 1/f noise (yet)
- Validity of “sandpile model” (Bak et al. 1987) now questioned
Power Law Impulse Filter

Simple sawtooth waveform

Impulse function $h(t) = 1/t^{\beta}$

$S(f) = 1/f^{\alpha}; \alpha = 2(1 - \beta)$

$S(f)$ output with cutoff
Power Law Queue

- Poisson arrivals with rate λ
- Service distribution $\sim t^{-\frac{1}{2}}$ (file size-dept.)
 ((Harrison et al. 2004) use Cauchy size dsn. $\sim 1/x^2$)
- Output (network link) distribution $\sim 1/f^\alpha$ with $\alpha = 1$
- Seems to account for ethernet (Needs more investigation)
- That still leaves the Internet ...
Renormalization Group Therapy
(for Recovering Physicists)

- RGT is a mathematical group with no inverse
 Rescaling ⇒ averaging or filtering. Lose information
 Physics from group invariants e.g., rotational symmetry group →
 conservation of angular momentum

- RGT developed by physicists to study connection between
 local and global system dynamics. (cf. ALOHA)
 Connection occurs when system correlations go “critical”
 (Physics-speak for fluctuations occur on all scales—length, time)
 System characterization goes singular at critical point
 Singular behavior characterized by a power law (Stanley 1999)

- RGT produces power law solutions with the added capability
 of characterizing the singularity at fixed point of RGT
 (sometimes)
Site Percolation Models

Purely geometric arguments (Almost physics-free!)

Critical concentration p_c?

Order parameter $|p - p_c|$

Correlation length $\xi \sim \frac{1}{|p - p_c|^{\nu}}$
Spatial Renormalization

Local transformation rules

Block re-scaling transformations

Local fluctuations averaged out under RGT (low-pass filter)
Want fixed points of the re-scaling transformation
Lattice geometry invariant at fixed point $p^* \Rightarrow$ LRD!
Compute power law exponents near p^*
Example 1: Linear Geometry ($d = 1$)

- $R(p) = p^2$ (taken pair-wise)
- $U(p) = \frac{p^2}{2} - \frac{p^3}{3}$

$R(p)$ is the RG transformation (from geometry)

Fixed points p^* occur where $R(p)$ intersects p

In this case, they’re trivial: $p^* = 1$ (unstable), $p^* = 0$ (stable)

$U(p)$ is the control function (maxima and minima)
Example 2: □ Lattice \((d = 2)\)

\[
R(p) = 2p^2 - p^4
\]

\[
U(p) = \frac{p^2}{2} - \frac{2p^3}{3} + \frac{p^5}{5}
\]

Fixed points: 0, 0.618034, and 1 (numerically)

cf. ALOHA stability
Example 3: \(\Delta \) Lattice \((d = 2)\)

\[
R(p) = p^3 - 3p^2(1 - p) \quad \quad \quad \quad \quad \quad \quad \quad \quad U(p) = \frac{p^2}{2} - p^3 + \frac{p^4}{2}
\]

Fixed points \(p^* \): 0, 0.5, and 1 (algebraically)

Use this ("simple") example to see how power law exponents for correlation length can be computed from RGT.
Critical Exponents for \triangle Lattice

Geometry of re-scaling to $b/\sqrt{3}$

RGT flows near $p^* = \frac{1}{2} \equiv p_c$

$R(p)$ is linear in $(p - p_c)$ near critical pt. Taylor expand:

$$p' = p_c - 6p_c(p_c - 1)(p - p_c) + O(p - p_c)^2$$

where p' is the concentration on the rescaled lattice
Critical Exponent for Correlation Length

2nd term in \(p' \) contains Taylor series derivative:

\[
\Lambda = \partial_p R(p) = 6(1 - p)p \bigg|_{p=\frac{1}{2}} = \frac{3}{2}
\]

Rescaled correlation length: \(\xi' = \xi(p') = \xi(p)/b \)

\(\xi \) is a homogeneous function of \((p - p_c)\):

\[
\xi(\Lambda \times |p - p_c|) = \xi(|p - p_c|)/b
\]

satisfied by power law \(\xi = |p - p_c|^{-\nu} \). Hence:

\[
\Lambda^{-\nu} |p - p_c|^{-\nu} = |p - p_c|^{-\nu}/b
\]

and solving for the exponent \(\nu \) with \(b = \sqrt{3} \):

\[
\nu = \frac{\ln(\sqrt{3})}{\ln(3/2)} = 1.35476
\]

Empirical value is \(\nu = \frac{4}{3} = 1.3333 \)
RG Theory of FARIMA Systems

Conventional ARIMA(0, 1, 0) \rightarrow random walk process
ARIMA(0, d, 0) with fractional difference $d \in (0, \frac{1}{2}]$
Fractional ARIMA $\rightarrow S(f) \sim f^{-2d}$ (Hosking 1981)

RGT generator

\[R(a_1, d) = \frac{4a_1}{2-a_1} 2^{-(d+1)} \]

Fixed point: $a_1^* = \left. 2 \left(2 - 2^{-d} \right) \right|_{d=\frac{1}{2}} = 0.585786$

RGT flows

Stable fixed point a_1^*
RGT and Pareto
(Back to the future)

From: Dr. Neil Gunther
Sent: Monday, May 24, 2004 11:08 PM
To: Fischer, Martin J.
Subject: FW: CORS follow up to MC25.2

Dear Dr. Fischer,

I enjoyed your presentation MC25.2 at CORS ... I may have something to offer regarding your question about the reduction of variance in the 2-Pareto model.

<table>
<thead>
<tr>
<th>Fischer et al.</th>
<th>NJG Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>If X is 1-P distributed r.v., then $Z = \beta X + k$ is a 3-P distributed r.v.</td>
<td>$X \rightarrow Z$ is an affine transformation</td>
</tr>
<tr>
<td>“Stretched” by β</td>
<td>Affine group $> \text{RG}$</td>
</tr>
<tr>
<td>“Shifted” by k</td>
<td>β: dilatation transf. (RG invariant)</td>
</tr>
<tr>
<td>Stretching does not change the CoV</td>
<td>k: is a translation (not RG invariant)</td>
</tr>
<tr>
<td>Given α, can get any μ and σ^2</td>
<td>RGT preserves ratio $\text{CoV} = \sigma^2/\mu^2$</td>
</tr>
<tr>
<td></td>
<td>Not from RGT. Only 1-P satisfies RGT</td>
</tr>
</tbody>
</table>
Conclusions (my unfunded research)

- Has Internet LRD phenomenon been oversold? (Ethernet?)
- RTG → physical power laws (from critical dynamics)
- Unstable ALOHA from load-dept. queueing fixed points
- Poisson input Ethernet packetization → $1/f$ LRD
- RGT for FARIMA models of $1/f$ LRD → fixed points
 May explain lack of observable Internet impact (critical dynamics)
 Very localized on Internet (not backbones or WANs)
- Which Pareto is physical?
 cf. unphysical multi-parametric scalability models
 $1-P (\bar{F}(x) \sim 1/x^\alpha)$ is RGT invariant (cf. $S(f) \sim 1/f^\alpha$)
- Plenty of cleanup to do ...
References