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Modern virtual machines (VMs) can be opaque to conventional performance
management tools because VM technology has surpassed standard measurement
paradigms. We attempt to ameliorate that problem by (1) observing that disparate
types of VMs lie on a discrete spectrum bounded by hyperthreading at one extreme
and GRID-like services at the other, and (2) recognizing that poll-based scheduling
is the common architectural element in many VM implementations. The associ-
ated polling frequency (from GHz to µHz) positions each VM in its respective
region of the VM-spectrum. Several case studies are analyzed to illustrate how
this insight can make VMs more visible to performance management techniques.

1 INTRODUCTION

Virtualization remains a hot topic because of the opacity
of virtual systems from the standpoint of conventional
performance management. These difficulties are further
exacerbated by the appearance of so many disparate im-
plementations employing the adjective virtual [See e.g.,
Sin04]. Moreover, modern computer architectures that
create virtual resources and services out of physical re-
sources are quite distinct from the more familiar virtual-
ization paradigms e.g., virtual memory or virtual storage.

This paper proposes a more unified picture of mod-
ern virtualization by recognizing that many of these ap-
parently disparate forms of virtualized resources or vir-
tual machines (VMs) can be considered to lie on a dis-
crete spectrum—the virtual machine spectrum or VM-
spectrum—comprised of three principal regions:

1. Micro-VMs: represented by the hyperthreaded mul-
ticore processors discussed in Section 3.

2. Meso-VMs: represented by virtual machine moni-
tors and hypervisors discussed in Section 4.

3. Macro-VMs: represented by the GRID services and
peer-to-peer (P2P) architectures in Section 5.
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The inclusion of GRIDs and P2P under the umbrella of
virtualization is an unusual step, but our intent is to
use the VM-spectrum both as a classification scheme to
organize the discussion of an otherwise bewildering array
of VM architectures, and as a quantitative framework for
explaining previously reported performance anomalies in
a variety of controlled measurements on VM systems.

Most previous discussions have tended to organize VM
capacity planning issues according to whether they are
implemented in hardware or software [See e.g., Joh03,
DBK03, Fri03, Bra05, Fer05]. Macro-VMs have not fea-
tured in such discussions, as far as I am aware. Con-
sequently, the inability to achieve full virtual capacity
in hyperthreaded hardware and anomalous performance
outcomes in software hypervisors, have been presented
as distinct performance effects.

The VM-spectrum paradigm, however, views these ef-
fects as arising from an architectural feature that is com-
mon to both hardware and software implementations; a
form of scheduling which we define in Section 2.2 as
proportional polling. In particular, it provides a simple
explanation for the observed Missing MIPS problem in
Sect. 3.2.2. The VM-spectrum also leads to the no-
tion that performance management of modern VMs is a
function of the time and distance scales on which their
respective polling mechanisms operate.

The paper is organized as follows. Section 2 defines the



rationale for the VM-spectrum and its three principal re-
gions. Each of these VM-regions is examined in detail,
starting in Section 3 with the micro-VM scale. The best
known VM implementations in this region are virtual pro-
cessors or hyperthreaded CPUs. Virtual processors also
constitute the first example of a polling-based scheduler
operating in the GHz to kHz frequency range. The as-
sociated performance case studies and recommendations
are presented in Section 3.2. Section 4 moves up the
VM-spectrum (Fig. 1) to slower polling meso-VMs repre-
sented by virtual machine monitors or hypervisors. These
VMs constitute the second example of a polling-based
scheduler operating in the kHz (kilohertz) to mHz (mil-
lihertz) frequency range. The associated performance
analysis case studies and recommendations are presented
in Section 4.2. Section 5 discusses the slowest polling
macro-VM services represented by GRIDs and P2P net-
works. At this scale, different types of state information
are collected via polling mechanisms which can have op-
erating periods in the range of days! Obviously, these
frequency ranges can have a significant impact on the
performance and scalability of virtual services. The as-
sociated performance analysis case studies are presented
in Section 5.2. Section 6 presents conclusions and rec-
ommendations.

2 VIRTUALIZATION SPECTRUM

Virtualization is about creating illusions. In particular,
modern computer systems are now sufficiently powerful
to present users with the illusion that one physical ma-
chine is really multiple virtual machines, each one run-
ning a separate instances of a different operating system
(OS). This is one reason for the resurgence of interest
in virtualization technologies. In the interests of space,
we forego any review of the history or relative merits of
various VM projects and products, which are adequately
discussed elsewhere [See e.g., Sin04, Fer05, and refer-
ences therein].

As many authors have already noted, the idea of creat-
ing virtual resources e.g., software emulators and virtual
memory, is not new. For the purposes of this paper, how-
ever, we draw a distinction between modern VMs and
older concepts of virtualized resources. Virtual mem-
ory, for example, is fundamentally different from VMs
in that it is intrinsically unstable and subject to thrash-
ing [Gun95]. The isolation of modern VMs often helps
to inhibit this kind of instability. (See Sect. 4)

The distinctive architectural feature which modern VMs
have in common is some form of polling mechanism
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Figure 1: The continuous EM-spectrum compared with
the discrete VM-spectrum. In both kinds of spectra,
the relative location of each region is determined by
their respective frequency scales (Table 1). For the VM-
spectrum, the frequency is set by the VM polling rate.
Like the invisible regions of the EM-spectrum, the mi-
cro and macro regions of the VM-spectrum are also less
visible to standard performance management tools.



Table 1: VM-spectrum Scales

Spectral Distance Polling
Region Scale (m) Period Frequency
Macro 102 to 106 min to day mHz to µHz
Meso 100 to 102 ms to min kHz to mHz
Micro 10−6 to 10−3 ns to µs GHz to MHz

to accomplish resource sharing. Polling algorithms are
intrinsically stable and fair; even round-robin polling
exhibits intrinsic fairness. The potential performance
penalty arises from the sequential nature of polling be-
ing worse than asynchronous communications. Based
on this distinction, we can classify the variety of VM
manifestations on a discrete spectrum, analogous to the
continuous electromagnetic or EM-spectrum (Fig. 1).

2.1 Principal VM Regions

Just as the EM-spectrum can be grouped into the ultra-
violet (UV), visible and infra-red (IR) regions, the VM-
spectrum can be similarly grouped into the micro-VM,
meso-VM, and macro-VM spectral regions. The relative
position of each VM is defined by their respective polling
rate or frequency scale in Table 1.

The so-called visible region on the EM-spectrum is an
anthropocentric term. Certain snakes can see in the IR
(detect heat) and bees can see in UV light. Similarly,
only meso-VMs are “visible” to us via conventional per-
formance management tools, in the sense of providing an
immediate view of performance and thereby some level
of potential control. Conversely, micro-VMs and macro-
VMs tend to be invisible to those same tools, so they
remain largely beyond our capacity management control.

From this standpoint, the distinction between VMs ac-
cording to whether they are implemented in hardware or
software, seems artificial; as artificial as the distinction
between heat and light. Recognizing each as different
manifestations of the same spectrum can lead to impor-
tant insights. As we endeavor to show in the remainder of
this paper, the VM-spectrum classification is more than
mere whimsy.

2.2 Polling Rates and Frequency Scales

A key observation of this paper is that relative position
of each VM sub-type on the VM-spectrum (Fig. 1) is
determined by the rate at which polling is carried out

by the underlying scheduling subsystem. To make this
statement more quantitative, we refer to a case where
the polling periods are well documented [Gun99]: meso-
VM scheduling (see Sect. 4.1). The polling period Tp, for
the scheduler to associate physical resource consumption
with a each active OS instance (software VM), is once
every 4000 ms or Tp = 4 s. The frequency is therefore
f = 1/Tp = 0.25 cycles per second or 250 mHz.

We assume (because it is not documented) that the
micro-VM polling period lies in the range of ns (the
processor GHz clock frequency) to µs (MHz frequency).
Macro-VMs can take minutes or days to detect active
peer horizons. These frequencies are key VM perfor-
mance determinants. For those who prefer to think in
terms of size, a distance scale d (in meters) can be loosely
related to the period Tp by d = vTp where v is the phase
velocity of the communication signal. Typically, v = c;
the speed of light. All these scales are summarized in
Table 1.

3 MICRO-SCALE: HYPERTHREADS

We begin a detailed analysis of VMs starting with the
highest frequency (smallest size) scale on the bottom of
the VM-spectrum in Fig. 1; virtualization of physical pro-
cessing resources. Intel, for example, refers to this form
of processor virtualization as hyper-threading technology
(HTT)) or multithreading (MT) on its XeonTM and Pen-
tium 4TM product lines. The rationale is to maximize
throughput performance by utilizing idle cycles. Part of
the current confusion over hyperthreading performance
stems from two possible views of what HTT offers:

(1 + ε) View: This is the hardware perspective where
ε is a small fractional quantity. Since there is a only
one execution unit—which is often under-utilized—
by simply duplicating a small number of registers, it
becomes possible to have another thread ready to
utilize any idle cycles. Intel quotes typical perfor-
mance gains ranging from ε = 0.1 to 0.3.

(2− δ) View: This is the software perspective as seen
by the OS and thus, performance management
tools. An HTT-enabled processor presents itself
to the OS as two logical or virtual processors
(VPUs). The OS literally detects the number of
VPUs (amongst other things) by interrogating Ar-
chitecture State (AS) registers EAX and EBX on
the chip (Fig. 2) using the APIC (Advanced Pro-
grammable Interrupt Controller) and CPUID IA-32
instructions. Ideally, one might expect δ → 0, but
in reality 0 � δ < 1 so compute cycles appear to



Figure 2: Simple block diagram comparing a 2-way SMP
(left) with an HTT-capable Intel processor (right). The
two blocks labeled AS (Architectural State) are regis-
ters which present themselves to the OS as two VPUs.
[Source: Intel Developer Forum]

be lost viz., the “Missing MIPS” problem referred
to in the Introduction.

The relationship between these two views can be sum-
marized simply as: δ = 1− ε. In this paper, we take
the (2− δ) view because it best represents the source of
confusion for many performance analysts and capacity
planners. As we shall see, the starting point is closer to
δ = ε = 0.5 for best case cpu-intensive workloads in both
controlled benchmarks and some production workloads.
More typically, since ε � 0.5 it follows that δ � 0.5
which results in a virtual capacity of (2−δ)� 1.5 VPUs.
This already tells us that part of the Missing MIPS prob-
lem is an illusion.

Hyperthreading can also be combined with multicore
technology [KTJR05], where multiple physical CPUs are
interconnected (like an SMP) on the same VLSI die.
Sun Microsystems refers to this as a chip multiprocessor
(CMP) and offers it with the UltraSPARC T1 processor
comprising 8 cores with 4 threads per core for a total
of 32-way VPUs. All the measurements presented in this
paper, however, were made on Intel processors with HTT
capability.

To further disambiguate physical CPUs from virtual
VPUs in the subsequent discussion, we employ the simple
mnemonic of a generic polling system [Gun05] in which
multiple queues or buffers are multiplexed onto a com-
mon server or execution unit (Fig. 3). In the case of
HTT processors there are just two queues corresponding
to single-entry thread buffers viz., the AS state registers
in Fig. 2. It is the state of these buffers that are mon-
itored by the OS scheduler. Threads are taken off the
run-queue and placed in the next empty AS buffer. On
chip, each thread buffer is serviced by the single execu-
tion unit in some order e.g., round-robin for “fairness”

Thread registers

Execution

Unit
OS

run-queue

Figure 3: Simple polling model of a generic hyper-
threaded processor with one execution unit servicing four
thread registers or single-entry buffers (e.g. UltraSPARC
T1). The AS registers in Fig. 2 correspond to two thread
buffers (e.g. Intel Xeon).

(cf. Sect. 4), although the exact protocol may be quite
complex and undocumented as part of micro-VM opacity.
Hereafter, CPU shall refer to the execution unit or core
processor, while VPU shall refer to the two AS registers
or thread buffers. The polling model has not been widely
recognized in this context and differs from the tandem-
queue model presented in [DBK03]. The reader should
note we are not suggesting that a constant polling delay
(on the order of nanoseconds in Table 1) is responsible
for the measured variation in HTT performance. That
extension to the polling model is developed next.

3.1 Micro-VM Polling

Polling systems are not new e.g., token-ring networks
use this principle, and are in common use for high-speed
data network switches and routers. The performance
characteristics of network polling systems are notoriously
difficult to solve analytically [GCY03].

Careful measurements of hyperthreaded processors indi-
cate that execution times can depend significantly on the
type of applications being run (Sect. 3.2). While hyper-
threading improves performance in many instances, some
tests suggest that thread processing times are dependent
on the load being borne by the thread-scheduler. More-
over, there are internal complexities such as how context
switching is handled, whether L1 caches are shared as
in Intel processors or independent L1 caches per core
as in Sun’s T1, so on. These invisible contributions to
variability in processing times can lead to erroneous ca-
pacity forecasting without an appropriate performance
model [See e.g., Fer05, Bra05, DBK03, Joh03].
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Figure 4: Extended PDQ model of a threaded web-
application showing the load-dependent thread server.

An M/G/1 queue can be used to represent the per-
formance of polling systems, but that requires rarely
measured first and second moments of the service
time [GCY03, Gun05]. Instead, we accommodate thread-
state variability in Fig. 4 by aggregating the thread-
buffers with the execution unit into separate load-
dependent servers. Taken together with the OS run-
queue this composite model more closely resembles an
M/M/m queue with a non-constant mean service time
(M/M/2 for HTT).

3.2 Performance Analysis Examples

We apply the composite PDQ model of Sect. 3.1 to mea-
surements of micro-VMs. Sect. 3.2.1 compares a multi-
threaded test workload with HTT enabled and disabled.
The data used in that portion of the analysis comes
from [Joh03]. Sect. 3.2.3 is based on measurements of
a production application with HTT enabled. The data
used in that portion of the analysis comes from [Fer05].

3.2.1 Thread Execution Analysis

[Joh03] constructed a test program to consume all avail-
able CPU cycles by configuring the number of executing
threads. The test platform comprised a dual-processor
Compaq ML530 equipped with 2.4GHz Intel r© XeonTM

processors running Microsoft Windows 2000TM. A BIOS

Table 2: Throughputs Calculated from [Joh03]

m Xoff XPDQ
off Xon XPDQ

on

1 0.004739 0.0046989 0.004975 0.004698
2 0.009302 0.0093970 0.009434 0.009397
3 0.009288 0.0093970 0.014151 0.014096
4 0.009346 0.0093970 0.014493 0.018794
8 0.009346 0.0093970 0.014546 0.018794
16 0.009373 0.0093970 0.014599 0.018794
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Figure 5: Predicted throughput (solid curves) and mea-
surements for a test program exercising m = 1, 2, . . . , 16
threads on a 2-way Intel platform with HTT disabled
(squares) and enabled (stars). The “Missing MIPS” are
quite apparent in the latter case.

utility provided the ability to enable and disable HTT.
Elapsed time was measured at 1 s resolution using the
time() function. System and user processing time were
measured using GetProcessTimes() at 100 ns resolu-
tion which included the activity of all process threads.

Throughputs in Table 2 were calculated from the data
reported in [Joh03] using the definition:

X = m/Tm , (1)

where m is the number of active threads and Tm the test
program elapsed time. Xon denotes HTT enabled and
conversely for Xoff . Fig. 5 compares these calculated
throughputs with those predicted by a polling model in
PDQ [Gun05]. With HTT disabled (lower curve), mea-
surement and prediction are almost identical and a knee
occurs at m = 2 (or 2 CPUs). With HTT enabled (4
VPUs), the knee occurs earlier than m = 4 and pre-
vents predicted throughput from being achieved. This is
the “Missing MIPS” problem referred to in Sect. 1. The
explanation is provided by analyzing the runtimes.



3.2.2 Missing MIPS Explained

Fig. 6 compares runtime data with polling model pre-
dictions. With HTT disabled (2 CPUs), the data fall
on the upper curve with the expected knee occurring at
m = 2. With HTT enabled (4 VPUs), the data points
lie above the predicted lower curve by about 30%. The
predicted curves in Fig. 6(a) assume a constant mean
service time per thread S0. For a processor-intensive
workload with a finite number of threads active during
each measurement, the predicted runtime curve should
increase linearly above saturation (m = 2 or 4) because
it is a closed queueing system [cf. DBK03]. But these
data are super-linear relative to the lower curve.
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(a) Predicted elapsed times and measurements for Fig. 5. Without
HTT the data (squares) match PDQ predictions (upper curve) very
closely with the knee occurring at m = 2 (i.e., 2 CPUs), but the
expected improvement with HTT enabled (lower curve) is not fully
realized for m ≥ 4 (stars).
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(b) The longer elapsed times under HTT can be accounted for by
increasing the service time in the PDQ model by 20% (dashed line).
The service times are constant but a transition to a longer service
time begins at m = 3.

Figure 6: Measured runtimes corresponding to Fig. 5.

We can equate runtime measured by the OS to residence

time R at the VPU. In Fig. 6(a) the residence time:

R0(m ≤ 4) = S0 , (2)

is simply the constant service time S0 at the foot of the
“hockey stick”, signifying a processor is always available
to service threads and no waiting time is incurred. When
m > 4, however, all processors become saturated and
threads begin to queue in the buffers of Fig. 3. For
a saturated closed queueing model, X(m) = 1/S0 and
the residence time above m = 4 is:

R0(m > 4) = mS0 − Z , (3)

which is linear rising in m (cf. Fig. 6). For these data,
the thinktime Z = 0 so that processors are 100% busy
during the tests. Previous authors have speculated that
increased wait time (mS0) may be responsible for the
observed increase in R [See e.g., Joh03, DBK03, Fer05],
but with a fixed number of threads, how can the thread-
wait time increase super-linearly? The answer is, S0 has
increased to a new value Sb > S0. In other words, (3)
has now become:

Rb(m > 4) = mSb , (4)

such that Rb is still linear rising (dashed curve in
Fig. 6(b)), but at a increased angle relative to R0. Of
the 30% increase in Rb, PDQ reveals that 20% is due to
a sudden increase in the thread-service time. It seems
reasonable to conclude that this increase (Sb − S0) is
associated with the extra time needed for internal state
management, as described in Sect. 3.1, when the number
of thread requests exceeds the number of VPUs (empty
buffers in Fig. 3).

Using the terminology of Fig. 2, the dual-core Compaq
ML530 has two independent sets of AS buffers denoted
1a0, 1a1 belonging to core 1, and 2a0, 2a1 on core 2.
In Fig. 6(b), the elapsed times start out on the lower
hockey stick because threads are likely being assigned to
available VPUs (empty thread buffers) in the order 1a0,
2a0 i.e., one thread per core. The third thread has to be
assigned to a core that is already busy (probably 1a1).
Notice that the elapsed time for m = 3 in Fig. 6(b) ap-
pears to “lift off” the lower hockey stick, reflecting the
extra time needed for internal management of the micro-
VM registers and caches. The fourth thread is then as-
signed to buffer 2a1 on already busy core 2, whereupon
the transition to the upper hockey stick (dashed curve)
in complete. The increase in service times is reflected in
OS measurements as prolonged execution times.

The foregoing analysis was based on the controlled cpu-
intensive workload in [Joh03]. IO-intensive workloads
would likely show a different elapsed time profile but our
expectation is that that they too can be analyzed using
the same or a similar PDQ model (See e.g., Sect. 4.2.2).



3.2.3 Windows 2000 Production Server

Missing MIPS are also seen in production workloads.
[Fer05] discusses performance measurements analyzed
with BMC Perform/Predict r©. The production system
is a dual-core Dell 2650 platform with HTT enabled
and running Microsoft Windows 2000 r©. The puzzle
is to account for web application “CPU-wait” in spite
of available processor capacity [cf. Bra05]. Specifically,
high-priority CPU busy never exceeds 85% during peak
demand, and Perform/Predict also indicates that CPU
time is the major component of response time, rather
then disk IO or memory accesses.

Drill-down analysis shows that the system was config-
ured with 4 VPUs, since HTT was enabled, and the
available processing capacity was therefore reported by
Perform/Predict as 400%. Of this, 323.26 ± 5% was
being utilized by the web application, with an aver-
age of 80.82% per VPU. From Sect. 3, we can write
(2−δ) = 1.62 VPUs per core or ε = 0.62. Even allowing
for 5% measurement error, this corresponds to excellent
HTT efficiency so, we can assume that each physical ex-
ecution unit is actually running at 100% busy with no
idle cycles remaining. In other words, there are no more
processor cycles available to do real work.

The paradox is resolved by noting that each processor
is being reported as 81% busy (up to 85% at peak) by
the performance management software, but that utiliza-
tion is calculated incorrectly on the basis of VPUs. From
Sect. 3 we know that the implied under-utilization is a
misdirection. On the other hand, because of the afore-
mentioned micro-VM opacity, performance management
tools have nothing else to go on.

3.3 Recommendations

Micro-VMs, in the form of VPUs, should not be regarded
on the same footing as physical CPUs. They are more
properly regarded as sophisticated polling systems, polled
at rates in the GHz to kHz range, with the number of
VPUs corresponding to the number of single-entry thread
buffers. Internal state management in these micro-VMs
introduces an intrinsic and often variable overhead.

The preceding performance analysis shows that the per-
ceived (2− δ) missing MIPS problem is really an illusion
due to not recognizing that the number of VPUs is actu-
ally 1 + ε where ε = 1− δ. The sudden prolongation of
elapsed times can be explained by the prompt increase in
service time required for internal micro-VM management

when the VPU buffers are fully occupied. This overhead
is invisible to the OS and cannot be tuned; only disabled
on Intel CMPs.

The value of ε is also likely to vary between CMP re-
leases from the same vendor, as well as across CMPs
from different vendors. Because of the aforementioned
lack of visibility on the VM-spectrum, qualifying micro-
VMs (possibly using some of the methods in Sect. 3.2)
should become a part of your capacity planning practice
during hardware procurement and software acceptance
testing.

4 MESO-SCALE: Hypervisors

VMWare r© and Xen (www.xensource.com) are two
examples of software-based VMs which offer a useful
of array of new capabilities such as server consolida-
tion, co-located hosting, distributed web services, iso-
lation, secure computing platforms and application mo-
bility [Zei04]. If the VMs are likened to musicians in
an orchestra, the conductor is called the hypervisor or
virtual machine monitor (VMM).

Figure 7: Organization of Xen 3.0 hypervisor supporting
Linux, Linux SMP, and Windows XP meso-VMs.

The partitioning resources in a physical machine to sup-
port the concurrent execution of multiple VMs poses sev-
eral challenges (Fig. 7). First, the VMs must be truly
isolated from one another. It is unacceptable for the ex-
ecution of one VM to adversely affect the performance
of another. This is particularly true when virtual ma-
chines are owned by mutually untrusting users. Second,
it is necessary to support a variety of different OS in-
stances to accommodate the heterogeneity of popular
applications. Third, and most importantly from a ca-



pacity planning standpoint, the performance overhead
introduced by VMMs should be small.

Whereas time-share scheduling (TSS) in Fig. 8 provides
each user with the illusion that she is the only user
of the physical processor, fare-share scheduling (FSS)
Fig. 9 provides each user (or group of users) with the
illusion that she possesses an entire platform—a vir-
tual machine—whose performance is scaled according to
her resource entitlement. Entitlement (E in Table 4) is
awarded by the system administrator through the alloca-
tion of shares (like owning shares in a corporation).
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Figure 8: Time-share scheduler model.

Xen (Fig. 7) uses a form of FSS called Borrowed Vir-
tual Time (BVT) as the default scheduler; other options
are also available e.g. real-time [BDF+03]. BVT pro-
vides proportional FSS for processor scheduling based on
weights. Each runnable domain receives a share of the
processor in proportion to its weight. A single processor
VMWare guest OS gets 1000 shares by default [VMw05].
The impact of share allocation on performance is dis-
cussed in Sect. 4.2.

4.1 Meso-VM Polling

The most important attribute of FSS for this paper is
that it employs a polling mechanism to govern resource
sharing at runtime. Fig. 8 shows a PDQ model of TSS
with three different process classes (Nr, Ng, Nb) each of
which is in one of three possible states: runnable (wait-
ing in the run-queue), running (on a processor) or sus-
pended (in the upper part of the diagram). If a request
has not completed execution when the time-quantum ex-
pires (e.g., 10 ms or 50 ms in VMWare) it is returned to
the tail of the run-queue. Processes waiting for other
resources (e.g., I/O requests) are suspended.

The PDQ model of FSS in Fig. 9 depicts each red, green
and blue user-process of the TSS model having been
allocated their own VM whose service time is scaled by
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Figure 9: Fair-share scheduler polling model of a meso-
VM like Fig. 7. The hardware platform has the same
logical association to the guest VMs as the physical CPU
does to the VPUs in Fig. 3.

their respective share entitlements Eg running under the
supervision of the VMM. Consequently, the actual service
time Sg for guest instance g becomes the virtual service
time

SV M
g =

Sg

Eg
, (5)

as indicated by the runtimes in Table 4. Each guest
virtual server (VM) is polled by the VMM on behalf of
the processors in the physical platform. The polling rate
operates at a frequency of around 250 mHz (Table 1).
Note the similarity with Fig. 3.

FSS [KL88] introduces a scheduling superstructure on
top of conventional TSS to connect processes with users
and their resource entitlements as represented in the fol-
lowing (highly simplified) pseudocode:

VM Share Scheduling: Polls every 4000 ms
(f = 250 mHz) to compare physical processor
usage per user entitlement (Fig. 9).

for(i = 0; i < USERS; i++) {

usage[i] *= decayUsage;

usage[i] += cost[i];

cost[i] = 0;

}



VM Priority Adjustment: Polls every 1000 ms
(f = 1 Hz) and decays internal FSS process priority
values (Fig. 9).

priDecay = Real number in the range [0..1];

for(k = 0; k < PROCS; k++) {

sharepri[k] *= priDecay;

}

priDecay = a * p_nice[k] + b;

Time Share Scheduling: Polls every physical pro-
cessor tick (f = 100 MHz) to adjust process priori-
ties (Fig. 8).

for(i=0; i<USERS; i++) {

sharepri[i] += usage[i] * p_active[i];

}

Process-level polling is essentially the same as standard
TSS, while VM-share polling controls process-level ca-
pacity consumption.

4.2 Performance Analysis Examples

In this section we analyze examples of meso-VM perfor-
mance. The data used in Sects. 4.2.1 and 4.2.3 are based
on internal benchmarks conducted by VMWare engineers
on an ESX Server and published in [VMw05]. Although
these data are extremely useful, one has to remain mind-
ful that such internally conducted benchmarks are often
selected so as to avoid illuminating the less than favorable
performance aspects of a vendor’s product. The data for
the J2EE/WebLogic application in Sect. 4.2.2, on the
other hand, come from tests that were conducted by a
client under my supervision. These data are not skewed
by any commercial considerations, but details concerning
the type of application had to be kept confidential.

4.2.1 VMWare Share Allocation Analysis

VMware ESX Server 2.5.1 provides a middleware layer
that enables users to create multiple independent VMs
on the same physical server. Benchmark experiments
employed processor-intensive workloads which consumed
100 percent of available processing resources. A single
application called 164.gzip from the SPEC CPU2000
benchmark suite (www.spec.org), was used as the work-
load. The SPEC version of the GZIP data compression
code does not perform any file I/O other than reading the
input, and all compression/decompression is performed
in memory. More importantly, the workload runs in user-
space and therefore induces very little overhead between

Table 3: ESX 2 Benchmark Measurements [VMw05]

Active VMs Shares per VM Runtime (s)
VMhi VMlo $hi $lo Rhi Rlo

1 7 2000 1000 1296 2352
1 7 2333 1000 1157 2357
1 7 2000 857 1153 2350
2 6 2000 1000 1470 2363
2 6 3000 1000 1159 2359
3 5 5000 1000 1159 2360

Table 4: PDQ Model Predictions for Table 3

Active VMs Entitlements Runtime (s)
VMhi VMlo Ehi Elo Rhi Rlo

1 7 0.2222 0.7778 1296.00 2592.00
1 7 0.2500 0.7500 1152.12 2687.90
1 7 0.2500 0.7500 1151.86 2688.11
2 6 0.4000 0.6000 1440.00 2880.00
2 6 0.5000 0.5000 1152.00 3456.00
3 5 0.7500 0.2500 1152.00 5760.00

guest OS kernel and the VMM. See Sect. 4.3 for more
on these limitations.

With the in mind, this VMWare study is nonetheless use-
ful from the standpoint of quantifying the potential im-
pact of different share allocation choices on meso-VM
performance. Such data are otherwise often difficult to
come by. The benchmark tests were conducted on an
4-way HP ProLiant DL580 server employing 2.2GHz In-
tel Xeon r© processors with HTT disabled. Although the
SPEC gzip benchmark does not represent a very realistic
workload, we note that [Bra05] has reported performance
anomalies for a production tar/gzip file-compression ap-
plication running on a system with IBM z/VM r© as the
hypervisor.

Table 3 summarizes the benchmark results with different
share allocations for the 8 VMs where between 1 and 3
VMS are executed at high priority i.e., a larger proportion
of the share pool. Table 4 summarizes the correspond-
ing performance prediction using a PDQ model based on
Fig. 9. The runtimes (Rhi) for the high-priority VMs
are in very close agreement with the measurements. The
increasing divergence between the predicted and mea-
sured values of Rlo is easily explained by noting that the
tests allowed each instance of the SPEC gzip code to
run to completion, whereas PDQ assumes the tests are
run in steady state. In the tests, when a high-priority
VM completed those processor cycles became available
to the high-priority VMs, allowing then to complete in
near constant time.



Figure 10: Predicted throughput (solid curves) and
measurements (dots) on a WebLogic J2EE production
application. The PDQ model exposes the missing MIPS.

4.2.2 J2EE WebLogic Production Application

Missing MIPS are also observed in production meso-
VM applications. Fig. 10 shows transaction per sec-
ond (TPS) measurements for a J2EE/WebLogic r© ap-
plication accessing a Sybase r© database. Measurements
were conducted on an isolated Dell PowerEdge 1750
server with dual 3.06 GHz Xeon processors. HTT
was enabled under Windows Server 2003 Enterprise
Edition r©. LoadRunner r© generated a controlled work-
load with N = 1, 2, . . . , 30 virtual users and the max-
imum achieved throughput was 100 TPS. JXInsightTM

provided traces from which PDQ service times were ex-
tracted as well as revealing that Sybase was not the bot-
tleneck.

Each WebLogic server (or VM) has a single execute
queue supported by 25 threads. If all 25 WebLogic
threads could do real work, PDQ predicts a maximum
application throughput of 415 TPS starting at N = 25
vusers. In fact, Fig. 10 shows that we only observe 100
TPS or about one quarter of the expected throughput.
The explanation is as follows. With HTT enabled, we
have 2-way× 2 = 4 VPUs virtual capacity from Sect. 3.
The WebLogic architecture involves listen threads (not
to be confused with the TCP/IP listen queue) that gate
work onto the execute queue. WebLogic assigns 2 lis-
ten threads per processor which, from the viewpoint of
WebLogic/Windows OS on this HTT-enabled platform,
translates to initiating 4 VPUs × 2 = 8 listen threads.
The knee in the throughput profile is therefore more prop-
erly expected at N = 8 vusers, corresponding to a system
throughput of 133 TPS (upper curve in Fig. 10). The
observed throughput, however, exhibits a premature knee
at N = 6 or about 75% of the assumed VPU capacity

Figure 11: VMWare throughput measured in scripts/hr
as function of active guests with HTT disabled (squares)
and enabled (stars).

(cf. Fig. 5). From Sect. 3, we recognize that there are
only 2-way× 1.5 = 3 VPUs or 6 active WebLogic listen-
threads running concurrently, hence the knee at N = 6
and the observed maximum throughput of only 100 TPs.
Despite having a pool of 25 threads available to service
the WebLogic execute queue, these six listen threads are
the performance limiter. With HTT disabled, the ex-
pected maximum throughput would be only 67 TPS at
N = 4 vusers i.e., 2-way× 2 = 4 listen threads.

4.2.3 VMWare Scalability Analysis

In the preceding example, a meso-VM is running on a
micro-VM such that the results might be confounded
by possible interactions between VM levels. To sepa-
rate these effects out, Fig. 11 shows measured VMWare
throughput as a function of active VMs together with
with HTT separately enabled and disabled.

With HTT disabled, the 4-way ProLiant DL580 exhibits
no missing MIPS. Besides a moderate decline of about 5
SPH (scripts per hour), possibly due to increasing VMM
overhead, the throughput ceiling of 66 SPH commences
at 4 VMs or guests. With HTT enabled, the 4-way HP
ProLiant DL580 server presents 4-way× 2 = 8 VPUs to
VMWare and should therefore exhibit a knee at 8 VMs.
Recalling Sect. 3 however, it is more realistic to expect
the actual virtual capacity to be closer to 4-way×1.5 = 6
VPUs. Fig. 11 reveals that even this expectation is not
met when the micro-VM and meso-VM levels interacting.
Presumably the loss in throughput is due to overheads
in VMWare in this case. Without additional instrumen-
tation, this level of detail remains opaque.



4.3 Recommendations

Meso-VMs are also implemented as polling systems op-
erating at rates in the kHz to mHz range. Proportional
shares are used to create software VPUs in which the ser-
vice rate is scaled by share-based entitlements according
eqn.(5). Proper share allocation can be critical for capac-
ity management [Gun99] and controlled measurements
like those in Sect. 4.2.2 should be considered essential
for proper capacity planning.

All meso-VM measurements should be made in steady
state i.e., where the difference between the average num-
ber of requests and the average number of completions
becomes vanishingly small [Gun05]. This would exclude
potentially misleading side-effects, like early completions
benefiting late completions in Table 3.

In contrast to the limited perspective offered by the
SPEC gzip workload in Sect. 4.2.1, the interested reader
can find a more encompassing set of benchmark data
in [BDF+03]. These data show that both Xen and
VMWare may exhibit significant performance degrada-
tion relative to CPU-bound workloads due to VM over-
head. For example, the SPEC WEB99 benchmark shows
70% degradation relative to SPEC CPU2000, while an
OLTP workload shows as much as 90% relative degra-
dation. Unfortunately, these results were not measured
relative to share allocations, which was the purpose in
Sects. 4.2.1 and 4.2.3.

Moreover, exercising more realistic workloads in no way
detracts from the usefulness of our PDQ models because
the service time Sg in (5) is the sum of user-time and
kernel-time, and both contributions are measured as part
of the system response to the workload. If this were
not true, then the analysis of the production system in
Sect. 4.2.2, which involves network interactions with the
Sybase database, could not be validated.

5 MACRO-SCALE: GRIDS and P2P

In this section we consider virtualization associated with
large-scale macro-VMs such as GRIDs and peer-to-peer
(P2P) hypernet networks. The latter include Gnutella
(Fig. 12), Napster, Freenet, Limewire, Kazaa, SETI@
Home, BitTorrent, Skype (Fig. 13), instant messaging,
WiFi, PDAs and even cellphones. They have progressed
from simple one-off file transfers to a scalable means for
distribution of applications such as games, movies, and
even operating systems.
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Figure 12: Cayley trees with degree-4 vertices similar to
those used in P2P networks like Gnutella and Napster.

Although P2P networks and GRIDs share the common fo-
cus of harnessing resources across multiple administrative
domains, they can be distinguished as follows. GRIDs
support a variety of applications with a focus on providing
infrastructure with quality-of-service to moderate-sized,
homogeneous, and partially trusted communities [Fos05].
P2P supports intermittent participation in vertically inte-
grated applications for much larger communities of un-
trusted, anonymous individuals. P2P systems provide
protocols for sharing and exchanging data among nodes.
The network architecture tends to be more decentralized,
and dynamics requiring resource discovery.

GRID computing has focused on scientific and engineer-
ing applications where it attempts to provide diverse re-
sources that interoperate [GTN+05]. The concept be-
hind the GRID is analogous to the electrical power grid.
When you throw the switch, you expect the light to come
on. GRID computing is most often discussed within the
context of scientific and engineering applications because
they are generally very CPU-intensive. ASCI BlueMoun-
tain, part of ASCI-Grid with 6144 processors, employs
FSS job scheduling [KC03]. See [Str05] for an overview
of GRIDs in the commercial enterprise.

These technologies are not mutually exclusive. P2P tech-
nologies could be used to implement GRID systems that
avoid or alleviate performance bottlenecks [TT04]. Al-
though these technologies are still rapidly evolving, ap-
plications are becoming more robust (it’s not just about
music files anymore), so capacity planners should pre-
pare themselves for the occasion when these macro-VMs
connect into your data center.

5.1 Macro-VM Polling

Polling protocols are employed by macro-VMs in at least
two ways: maintaining connectivity between peers, and
security on the network. Each type of polling protocol
has important ramifications for network performance and
capacity. Although generally more nebulous and system
specific than micro-VM or meso-VM polling mechanisms,
the particular case of wireless networks (see IEEE 802.11
standard) provides an illustrative example of their poten-
tial performance impact.



When carrying both voice and data, VoIP packets re-
quire contentionless periods in the transmission proto-
col, whereas data packets can tolerate contention (simple
retry). Wireless access points poll, regardless of whether
data is available for transmission or not. When the num-
ber of stations in the service set grows, the polling over-
head is known to become large. Without some kind of
service differentiation, performance degrades. One en-
hancement that has been considered to increase network
capacity is a polling list where idle nodes are dynamically
deleted or active ones are added. This helps to increase
the number of contentionless periods thereby improving
WLAN capacity by about 20%.

Polling to maintain P2P network security is employed
in the sense of collecting opinions or votes. Providing
security for distributed content sharing in P2P networks
is an important challenge due to vulnerabilities in many
protocols for sharing the “reputations” of peers. Certain
polling protocols are subject to attacks which can alter
the results of any voting procedure. Securing macro-VM
networks has capacity planning implications.

5.2 Performance Analysis Examples

The goal of macro-VMs is to enable scalable virtual or-
ganizations to provide a set of well-defined services. Key
to performance is the network topology and its asso-

Figure 13: Skype hypernet network showing both peers
and super peers (large black dots).

Table 5: P2P hypernet topologies ranked by maximal
relative bandwidth (BW), showing connections per peer
(C/N), average number of network hops (H), and the
number of supported peers (N) in millions.

Hypernet Topology C/N H N × 106 BW
20-Cube 20 10 2.1 100
10-Torus 20 11 2.1 93
20-Cayley 20 6 2.8 16
8-Cayley (Napster) 8 8 1.1 13
4-Cayley (Gnutella) 4 13 1.1 8

ciated bandwidth. To assess the scalability of network
bandwidth, this section draws on performance bounding
techniques described in [Gun05, Chap. 5]. Since very
few reliable measurements exist for these large-scale sys-
tems, the data in this section are purely theoretical and
due to the author.

5.2.1 Bandwidth Scalability Analysis

The main results are summarized in Table 5 which shows
each of the topologies ranked by their relative band-
width. The 20-dimensional hypercube outranks all other
contenders on the basis of query throughput. For an
horizon containing 2 million peers, each servant must
maintain 20 open connections, on average. This is well
within the capacity limits of most TCP/IP implementa-
tions. The 10-dimensional hypertorus is comparable to
the 20-hypercube in bandwidth up to an horizon of 1
million peers but falls off by almost 10% at 2 million
peers.

The 20-valent Cayley tree is included since the number
of connections per peer is the same as that for the 20-
cube and the 10-torus. An horizon of 6 hops was used for
comparison because the peer population is only 144,801
nodes at 5 hops. Similarly for 8-Cayley, a 9 hop hori-
zon would contain 7.7 million peers. These large incre-
ments are a direct consequence of the high vertex de-
gree per node. The 4-Cayley (early Gnutella network
in Fig. 12) and 8-Cayley (Napster network) show rela-
tively poor scalability at 1 million peers [Rit02]. Even
doubling the number of connections per peer produces
slightly better than 50% improvement in throughput.

Because bandwidth in these topologies grows in propor-
tion to added nodes or peers (Fig. 14), no throughput
ceiling of the type appearing in Figs. 5, 10 and 11 is ob-
served. BitTorrent is a P2P file-sharing protocol which
effectively implements higher-order topologies dynami-



cally in software. Every client downloading a file from
the network usually donates part of its own bandwidth,
making it much faster than earlier P2P technologies like
Gnutella or Kazaa.
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Figure 14: Predicted bandwidth as a function of peers
(N) for different hypernet topologies in Table 5.

5.2.2 Remote Polling Rates

Though BitTorrent is a good protocol for broadband, it is
less effective for dial-up, where dropped connections are
common. On the other hand, many HTTP servers drop
connections over several hours, while many torrents ex-
ist long enough to complete a multi-day download often
required for large files. An uploading client is flagged as
snubbed if the downloading client has not received any
data from it in over 60 seconds.

Some BitTorrent clients also report the share ratio, a
number relating the amount of data uploaded to the
amount downloaded. A share ratio of 1.0 means that
a user has uploaded as much data as they have down-
loaded. Some networks, for example, prevent access to
new torrents for the first 24–48 hours (i.e., up to 1.7×105

seconds in Table 1) that the torrent is active to people
with overall ratios of less than 1.0 and a certain amount
of data uploaded.

5.3 Recommendations

It is more difficult to make many practical recommenda-
tions for meso-VMs because they are still emerging tech-

nologies. Sun Microsystems CEO Jonathan Schwartz, a
major proponent of enterprise GRID computing, recently
stated: “Behind the corporate firewall, the transforma-
tion toward multi-tenant grids has been slower. Frankly,
it’s been tough to convince the largest enterprises that
a public grid represents an attractive future. But things
are changing.” Nonetheless, we suggest that GRIDs and
P2P are more properly regarded as a legitimate region of
the VM-spectrum (Fig. 1).

Two important points for capacity planners. First,
adding nodes in macro-VMs adds bandwidth, so the
throughput ceilings seen in Figs. 5, 11 and 10 are not
expected to appear. Second, macro-VMs are mostly in-
visible to standard performance management tools, but
some of the same performance analysis techniques dis-
cussed in Sects. 3.3 and 4.3 should be applicable as these
technologies begin to connect to your data center.

6 CONCLUSION

Modern computing systems that abstract virtual re-
sources from physical resources have surpassed the mea-
surement paradigms of most performance management
tools, thus they remain largely opaque to the perfor-
mance analyst and capacity planner. As noted so pro-
saically in [Fer05], dealing with virtualization is like being
adrift in a vast “sea” of unknowns where one hopes to
spot some occasional “islands” of familiarity.

We have attempted to improve familiarity by introducing
a spectral classification for VMs with proportional polling
schedulers. This immediately distinguishes them from
other forms of virtualization e.g., virtual memory. A poll-
based classification also means that subcategories of VM
architectures (micro, meso, macro) can be defined in
terms of polling frequency; analogous to the UV, visible,
and IR frequencies of the EM-spectrum.

Polling rates also set the operational scale of VMs and
we have shown that, just like the visible region of the
EM-spectrum, meso-VMs are the most “visible” to per-
formance management control. While not perfect, the
capacity planner has the immediate and measurable op-
tion of tuning performance and setting capacity limits by
adjusting shares awarded to each VM. Guidance when
allocating shares for performance needs to be improved,
and performance models of the type developed here can
play a significant role.

The macro-VM spectral region is largely invisible to con-
ventional performance management tools and will likely
remain that way for the foreseeable future. The prognosis



is reminiscent of the reduced performance management
capabilities for current web-based applications.

Curiously, the news may be somewhat better in the
micro-VM region. Multithreaded applications like Java
(Sect. 4.2.2) are very well-suited to HTT-type hyper-
threading. [Sut05] has pointed out that the onus is now
on application developers to understand or re-learn the
subtleties of concurrent programming, but this time ap-
plied to micro-scale CMPs. Concurrency was already
extremely important for meso-scale SMP applications.
It may be vital for micro-scale CMP applications. Per-
haps the VM-spectrum classification presented here can
provide the beginnings of a useful framework for future
discussions about virtualized systems.
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