
UNDERSTANDING THE MP EFFECT: MULTIPROCESSING IN PICTURES

Neil J. Gunther

Computer Dynamics Consulting, Mountain View, CA 94040, U.S.A.
codynamo@aol.com

Multiprocessors, whether mainframes or open systems, do not deliver linear-scaling capacity. The
real capacity curve is sublinear due to some amount of processing capacity being usurped by the
system in order to orchestrate the interaction between physical processors and computational
resources. This computational overhead is sometimes referred to as the MP Effect (MPE) and its
magnitude is determined by both platform architecture and workload characteristics. Modeling the
MPE is important for predicting multiprocessor capacity during procurement and upgrade periods.
Detailed models (e.g., a simulation or queueing network model) are difficult and time-consuming
to construct and verify. A simpler approach is to use an equational model (e.g, Amdahl's law) and
fit the data to this equation. The problem is, there is more than one such equational model from
which to choose. Which one is "correct?" We review three capacity models that have been used
by various authors at CMG and elsewhere. These models are based on Amdahl, Geometric, and
Quadratic scaling, respectively. We present a totally new perspective on this kind of modeling by
introducing a pictorial representation of the underlying dynamics expressed by each capacity
model. With the dynamics revealed, the capacity planner is in a better position to select the
appropriate model by matching it to the platform and workload rather than relying on naive curve
fitting. Examples, showing how to apply this new insight, will be presented in the session.

INTRODUCTION†

Computational overhead refers to the fraction of
processor cycles usurped by system work in order
to execute the user workload. This loss in
processing capacity diminishes the potential
economies of scale offered by multiprocessor (MP)
computers.

Typical sources of MP overhead include:
• O/S code paths (e.g., syscalls in Unix;

supervisor calls in MVS)
• Exchanging shared-writeable data between

processor caches
• Data exchange between processors and main

memory
• Spin-lock synchronization (i.e., serialization) of

accesses to shared data
• Waiting for an I/O to complete a DMA (direct

memory access)

† © 1996, 1997 Neil J. Gunther. All Rights Reserved.
No part of this document may be reproduced, in any
form, without the prior written permission of the author.
Permission is granted to the CMG, Inc., to publish this
article in the 1996 Proceedings.

MP overhead can be regarded as a type of
interaction between the processors as they
contend for shared subsystem resources. As
more processors are added to the complex, to do
more work, the overhead typically increases
because the degree of interaction increases. This
so-called MP Effect (MPE) occurs in both
proprietary mainframes and open system
multiprocessors. Without the MPE, the aggregate
processor capacity would scale linearly. The MPE,
however, is responsible for the incremental
throughput falling below the linear ideal.

MP Interactions

From simple observation we know that MP
capacity declines in a nonlinear fashion such that
any attempt to model the MPE requires a
nonlinear function; not a single number. By using
an appropriate (nonlinear) function, we can
formulate simple models which offer significant
assistance in setting realistic expectations for MP
capacity in the presence of MPE. The practical
application of such MP capacity models has been

discussed by various authors at CMG and ICCM.
Some notable examples include:

• Geometric scaling in proprietary mainframe
MPs [Artis 1991]

• Super-serial scaling for open system MPs
[Gunther 1993]

• Amdahl's law and the effective MPL for parallel
sysplex [Kraus 1995]

• Regression techniques for MP acquisition
[McGalliard 1995]

• Quadratic approximation for open system MPs
[Gunther 1995]

The great attraction of such models is that they
are much simpler to construct than a more detailed
simulation or queueing network model. The
detraction is the existence of more than one
equational model from which to choose. In view of
all these choices, the capacity planner can
justifiably ask for the "correct" scaling law to
please stand up!

One approach to making the "correct" choice is to
see which model best fits the data. Unfortunately,
bets-fit is not always the best criterion because it
assumes that the data is accurate and that the
MP has been tuned for optimal performance at
each configuration. To be certain the data are
optimal, you'd like to compare the measurements
to a model. This is a circular argument.

We address this vexing circularity by revealing the
underlying dynamics of three MP capacity models:

• Amdahl scaling capacity denoted by A(p)
• Geometric scaling denoted by G(p)
• Quadratic scaling denoted by Q(p)

where p is the number of physical processors.
Once we know the dynamics of processor
interaction in each case, we should be in a better
position to select the appropriate capacity model
based on our knowledge of the workload. As far
as this author is aware, making the connection
between these simple capacity formulae and their
underlying dynamics has never been done before.

ONE PARAMETER MODELS

The three capacity models we discuss are
important because they are in common usage by
practitioners and they also fall into the simplest
class of capacity functions that are characterized
by a single parameter. First, we review the three
models: A(p), G(p), and Q(p), in their conventional,
equational form.

1. Amdahl Scaling: The Amdahl capacity model
is defined as:

A(p) =
p

 1 + σ (p - 1)
 (1)

where p is the number of processors in the CPU
complex. The parameter, 0 < σ < 1, known as the
seriality constant, refers to the serial fraction of the
workload that cannot be made to execute in
parallel [Amdahl 1967; Hennessy and Patterson
1990]. The asymptotic capacity is A(∞) ≈ 1/σ. (See
Note 1 at the end of this paper)

Example: If the amount of serial work is 3.33% of
the workload, then the effective capacity of a 10-
way MP is predicted to be:

A(p) =
10

 1 + 9 * 0.0333
 = 7.69

In other words, 2.31 CPU equivalents of capacity
is lost to MPE.

2. Geometric Scaling: The Geometric capacity
model G(p) can be written as:

G(p) = 1 + Φ + Φ
2
 + Φ

3
 + ... + Φ

p-1

(2)

where the parameter, 0 < Φ < 1, is known as the
mp factor and refers to the fraction of uniprocessor
capacity available at each CPU increment. The
asymptotic capacity is: G(∞) ≈ 1/(1−Φ).

Example: If the mp-factor = (100 − 3.33)%, then
a 10-way will have a predicted capacity of:

G(p) = 1 + 0.967 + 0.967
2

 + 0.967
3

+ ... + 0.967
9

 = 8.71

or 1.29 CPU equivalents is consumed by
computational overhead. Applications of this
scaling modelcan be found in [Artis 1991] and
[McGalliard 1995].

2. Quadratic Scaling: The capacity model is:

Q(p) = p − g p (p − 1) (3)

where the parameter, 0 < g < 1, refers to the
overhead factor contributed by each CPU in the
complex. See [Gunther 1993; 1995] for details.

Example: If the g-factor = 3.33%, then a 10-way
has a predicted capacity of:

Q(p) = 10 − 0.0333 * 10 * 9 = 7.00

or 3 CPUs are consumed by computational
overhead. Unlike Amdahl and Geometric scaling,
Quadratic scaling does not possess an asymptote.
Rather, it predicts a capacity maximum at pmax =
(1 + g) / 2g. See Figure 1.

Figure 1 shows a complete set of capacity
projections for up to 20 processors using the same
parameter value, 3.33%, for each model.
Typically, when fitting these capacity models to
real data, the parameter values would be different
for each model. For a 10-way the spread in
prediction is almost 2 CPUs worth of capacity,
while a 20-way has a spread of about 8 CPUs
worth of capacity. What is a capacity planner to
do?

Processors (p)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 10 20

Figure 1. Capacity models: Amdahl (∆), Geometric
(o), and Quadratic (q), with parameter values
equal to 3.33%.

It should be noted that MP scaling models differ
from other capacity evaluation methods such as
those based on ITR [Fitch 1992] or Relative I/O
Content [Major 1986]. There, the relative
processor capacity is determined by direct
measurement of a specific MP configuration.
Scaling models, on the other hand, attempt to
predict the relationship between configurations,
thus enabling extrapolation (or interpolation)

beyond existing capacity measurements. Such
capacity projections are useful when assessing
benchmark data during a procurement cycle or
when upgrading the same MP configuration with
faster processors.

Level Crossing

For later comparisons, we set the MP overhead to
be equal when the second CPU is added in each
of the three capacity models (see Note 2). To
ease the arithmetic calculations, we assume that
1/4 of MP capacity is lost when the second CPU is
added i.e., A(2) = G(2) = Q(2) = 1.75 CPU
equivalents are available capacity. It follows that
the values of the respective model parameters
must be different to meet this constraint. They are
summarized in Table 1.

The corresponding capacity ratios are summarized
in Table 2. Note that a g-factor of 1/8
corresponds to a 12.5% overhead; an extremely
high value. Hence, the Q(p) capacity has fallen to
zero with p = 9 processors in the MP complex.
Remember, we are just using these values for the
purposes of demonstration.

Table 1. Equal Overhead Constraint
Model Capacity Parameter

Amdahl A(2) = 1.75 σ = 1/7
Geometric G(2) = 1.75 Φ = 3/4
Quadratic Q(2) = 1.75 g = 1/8

Processors (p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10

Figure 2. Scaling with Table 1 parameters.
Capacity ratios are in Table 2. Legend as in Fig. 1.

The capacity curves corresponding to Table 1
parameter values appear in Figure 2. The
ordering of the curves is different with Amdahl
scaling being more efficient than Geometric
scaling, which is more efficient than Quadratic
scaling.

The actual capacity values corresponding to
Figure 1 are provided in Table 2. We shall be
referring back to these numbers when we make
use of the pictorial representation in the next
section. It is important to keep in mind that the
numbers in Table 2 were calculated using the
scaling models as formulated in equations 1
through 3.

Table 2. Capacity Projections
CPUs A(p) G(p) Q(p)

1 1.000 1.000 1.000
2 1.750 1.750 1.750
3 2.333 2.313 2.250
4 2.800 2.734 2.500
5 3.182 3.051 2.500
6 3.500 3.288 2.250
7 3.769 3.466 1.750
8 4.000 3.600 1.000
9 4.200 3.700 0.000

Our objective is to understand why each of these
models gives such different capacity projections.
Having established a common basis by selecting
modeling parameters that result in equal 2-way
overhead, we are now in a position to reveal the
underlying dynamics of each capacity model.

PROCESSING IN PICTURES

We are going to introduce a pictorial
representation of multiprocessor overhead that will
be unfamiliar to everyone, since it has not been
done before. (see Note 3) The simplest model to
understand using these pictures is the Quadratic
capacity model.

Quadratic Pictures

First, consider a dual processor (p = 2) shown in
Figure 3 where processors are shaded circles and
a message exchange is an arrow.

1/8

Figure 3. One contribution to MPE in a dual
processor system.

The cost of sending one message in the quadratic
model is 1/8th of a CPU's capacity. This follows
immediately from the fact that the g-factor has the
value 1/8 in Table 1. By definition, the g-factor is
a direct measure of the overhead per CPU.

At some point, the other CPU may send a reply
message to the first processor so that the
computation can be completed. The response
message is depicted in Figure 4. Since the
system is symmetric (the 2 CPUs are
indistinguishable), the cost of sending the reply in
the other direction is also 1/8th of a CPU.

1/8

Figure 4. Another contribution to the overhead in
a dual processor system. The cost of replying is
the same as the initial request since the entire
system is symmetric.

The total cost (in CPU cycles) for a request-reply
pair is therefore, 2/8 = 1/4 of a CPU per bi-
directional message (Figure 5).

1/4

Figure 5. The total contribution to the overhead in
a dual processor system is the simply the sum of
the request and reply messages.

Let's check this conclusion. From equation (3) we
know that the second term refers to the amount of
capacity lost to overhead. To determine the
remaining computational capacity, we simply
subtract off the overhead from the ideal capacity
(the first term). In other words,

Q(2) = 2 − 2 *
1
8

 = 1
3
4

(4)

which is in agreement with Q(2) in Table 1.

That was easy. Maybe we just got lucky? Let's
check the next level; a 3-way multiprocessor. The
corresponding diagrams are shown in Figure 6.
Each message still costs 1/8th of a CPU to send

and there are 6 possibilities: 3 requests and 3
replies.

There are 6 messages (arrows), each costing 1/8.
The overhead is therefore 6/8. If we now subtract
that loss from the physical capacity (3 CPUs), the
result should be the available capacity predicted
by Q(3).

1/8

Figure 6. Overhead contributions in a 3-way MP.

Let's do the arithmetic.

Q(3) = 3 − 6 *
1
8

 = 2
1
4

(5)

Alternatively, we could calculate the capacity by
noting that there are 3 bi-directional messages,
each costing 1/4 of a CPU, as shown in Figure 7.
But 3/4 is the same as 6/8 which must produce
the same arithmetic result as equation (5).

1/4

Figure 7. Total overhead in a 3-way MP.

Once again, we have agreement with the Q(3)
value in Table 1. This is getting infectious! Let's
try a 4-way multiprocessor. The 12 messaging
possibilities are shown in Figure 8.

All these cases can be summarized more
efficiently using bi-directional arrows as shown in
Figure 9.

1/4

Figure 9. Total overhead in a 4-way MP.

Repeating the arithmetic step for the 4-way
MP we have 6 bi-directional messages, each
costing 1/4. Subtracting off this overhead
produces:

Q(4) = 4 − 6 *
1
4

 =
8
2

 −
3
2

 = 2
1
2

(6)

Once again, we have agreement with Q(4) in
Table 1. Going any further, we become
overwhelmed by an explosion of diagrams.
For example, a 10-way MP has nearly 2 million
pictures!

But we are not proposing these pictures as a
calculational method. Instead, we are going

Figure 8. Overhead in a 4-way multiprocessor.

to use them to interpret the dynamics of
multiprocessor overhead in each of the scaling
models defined by equations (1)-(3). Can we say
anything, so far, about the dynamics of Quadratic
scaling? Yes we can.

Quadratic scaling is a model in which each
processor communicates with the other
processors, one at a time. That's why there are
12 message arrows in Figure 8. More formally, this
is known as a pair-wise exchange or point-to-point
protocol. Each time a processor sends a message
it cost 1/8 of a CPU's capacity because the
message has to be set up individually every time.

Moreover, as more processors are added to the
system, the cost of communication increases
dramatically. Any processor has to reach (p-1)
other processors. Hence, the overhead grows
quadratically; as reflected in the second term of
equation (3). Eventually, the total cost becomes
such a burden, the capacity actually becomes
reduced (Figures 1 and 2) as the processor
interaction soaks up more and more CPU capacity.

As you might guess, this is not the most efficient
communication protocol but it does occur in real
shared-memory multiprocessors. One CPU will
have data needed by another CPU. The first puts
a data request on the bus and the other CPU
responds with data from its cache. This happens
over and over again, between different CPU pairs,
during the course of executing work -- particularly
in the case of commercial workloads [Gunther
1993].

Amdahl Pictures

We could design a more efficient messaging
protocol in the following way. Instead of setting
up and sending a message to other processors,
one at a time, suppose a processor sends its
message to every other processor, simultaneously.

1/9

1/9

Figure 10. Broadcast overhead in a 3-way MP.

That way the cost of setting up the message is
incurred just once. How does this modified
protocol look in terms of our processing pictures?

The 2-way diagrams are identical to those in
Figures 3 and 4. This has to be true since we
demanded the overhead be the same for all three
models at p = 2. The interesting difference occurs
in the 3-way case.

2/9

Figure 11. Aggregate broadcast in a 3-way MP.

In the pair-wise protocol (Figure 6) we had 6
diagrams (3 requests and 3 replies). With the
modified protocol, we only have 3 diagrams
(Figure 10) because one processor sends two
messages simultaneously. In addition, the cost of
sending the message is less since two messages
are sent for the price of one. This is reflected in
the 3-way message cost being reduced from 1/8
to 1/9.

By the way, there is not enough space here to go
into an explanation of where the cost number 1/9
comes from in this modified protocol. I have to ask
you to take it on faith. You will see, however, that
things do work out correctly. If you are still
overcome by an irrepressible urge to understand
the numerical details, Refer to the handout
material for a deeper explanation. The aggregate
cost is shown Figure 11. Each bi-directional arrow
costs 2/9ths of a CPU.

Now, we check the arithmetic using the same
procedure we used for the Quadratic model in
equation (5). Subtracting off the overhead, we
find:

3 - 3 *
2
9

 =
9
3

 −
2
3

 =
7
3

 = 2
1
3

(7)

which is exactly the result we obtained for Amdahl
scaling, A(3) = 2.333, in Table 1. Note, we did not
use the usual form of Amdahl's law, equation (1),
at all. This is quite remarkable!

Next, we check the 4-way
overhead. There are only
4 diagrams (Figure 12)
and the cost is further
reduced from 1/9th to
1/10th of a CPU.

The aggregate diagram is
the same as the one in
Figure 9 but with each bi-
directional arrow costing
3/10ths of a CPU instead of 1/8th. Doing the
arithmetic, we find:

4 − 4 *
3

10
 =

20
5

 −
6
5

 =
14
5

 = 2.80
(8)

which is precisely the 4-way result A(4) for Amdahl
scaling in Table 1.

So, now we know the hidden dynamics in
Amdahl's law: it models a broadcast protocol. It is
more efficient than Quadratic scaling because the
cost of setup is a one-shot per message cycle.
On the other hand, as the system is scaled up,
there are more CPUs to broadcast to, hence the
overhead grows more slowly than for the pair-wise
protocol that underlies Quadratic scaling. Hence,
the capacity growth under a broadcast protocol
reaches an asymptote just like Amdahl's law (See
the remarks following equation 1).

Although this broadcast protocol is clearly more
efficient than pairwise exchange, there is a
problem in applying it. Most commercial workloads
do not induce this kind of processor interaction
very often. Although CPU broadcasts do occur,
they occur relatively infrequently in the execution
of commercial workloads. In this sense, modeling
MP capacity with a purely broadcast protocol is
likely to be unrealistic in most cases.

Some exceptions might include scientific or
financial workloads. For certain numerical
workloads, a high degree of parallelism is possible
e.g., calculating a matrix inverse where each
matrix element or sub-block is assigned to a
processor. After each block is calculated, the
other processors need to get each other's results
before the next phase of computation can take
place. Broadcasting the numerical updates is
clearly the most efficient performance solution.

Geometric Pictures

Finally, we apply our processing pictures to reveal
the dynamics of Geometric scaling as defined by

equation (2). This is the least intuitive protocol to
understand because it involves some complicated
mathematics. Once again, I'm just going to state
the results for you. Further justification can be
found in the handouts provided during this
session and in [Gunther 1997]. As usual, let's
start with the 2-way protocol (Figure 13).

Figure 13. Nearest-neighbor overhead in a 2-way
multiprocessor.

Geometric scaling corresponds to a nearest-
neighbor protocol. For the 2-way case, as you
you might have already anticipated, the cost per
message is the same as for the other models but I
draw the diagram in Figure 13 a little differently.
The 3-way case is shown in Figure 14.

11/64 = 0.172

Figure 14. Nearest-neighbor overhead in a 3-way
multiprocessor.

The tricky part is determining the cost per
message (arrow). It turns out to be 11/64ths of a
CPU. This is not at all obvious (see [Gunther
1997] for a complete discussion). Similarly, the
cost a bi-directional message is 2 * 11/64 =
11/32nds of a CPU. Doing the arithmetic (there
are 2 bi-directional arrows) we have:

1/10

1/10 1/10

Figure 12. Broadcast overhead in a 4-way MP.

3 − 2 *
11
32

 =
48
16

 −
11
16

 =
37
16

 = 2.31
(9)

which is exactly the 3-way result for G(3) in Table
1. The cost per message in the 4-way system
(Figure 15) is 81/384 (don't ask) and the bi-
directional cost is shown in Figure 16.

81/384 = 0.211

Figure 15. Nearest-neighbor overhead in a 4-way
multiprocessor.

You see now why Figure 13 is drawn differently.
The overhead in an N-way multiprocessor is
represented by a linear chain of (N-1) bi-directional
arrows. Performing the, by now, familiar arithmetic
(there are 3 bi-directional arrows) gives:

4 − 3 *
81

192
 = 2.73

(10)

in agreement with G(4) in Table 1. Note also that
we did not sum a series as would be required by
the definition of Geometric scaling in equation (2).

81/192 81/192 81/192

Figure 16. Bi-directional overhead in a 4-way
Geometric scaling multiprocessor.

I call this the bucket brigade protocol. If a CPU
wants to send a message to its immediate
neighbor, it is the same cost as the pairwise
protocol. But if that CPU needs to send a
message to another CPU further down the chain,
all the intermediate CPUs incur some cost for
passing the original message along. Like Amdahl
(broadcast) scaling, the capacity reaches an
asymptote.

THE BIG PICTURE

In the preceding discussion, we uncovered the
hidden dynamics that belong to some common
models used to predict MP capacity in the

presence of the MP effect. We were motivated to
find an alternative to the usual approach, of just
fitting the data to a model, because it involves a
logical circularity that is often overlooked and can
render misleading capacity predictions.

All three capacity models assume a homogeneous
workload i.e., every processor does the same kind
of work, and they assume there is an inherent cost
for processor interaction. That cost is reflected in
a single parameter in each capacity equation
(Table 1). In summary, we are now able to draw
the following conclusions about the applicability of
these models:

Quadratic scaling: The MPE arises from a
PAIRWISE exchange interaction. A CPU can only
interact with the other CPUs, one at a time. As
the system is scaled up, the cost per message
remains fixed because the CPU needs to setup for
each message to every other CPU. Compounding
this, there are (p-1) paths to all the other CPUs.
This growing aggregate cost gives rise to the
possibility of retrograde capacity (See Figures 1
and 2).

Amdahl scaling: The MPE arises from a
BROADCAST interaction. A CPU broadcasts to all
other CPUs simultaneously. The suspension of
computation during the broadcast cycle causes all
CPUs to take longer to complete their work. As
the system is scaled up, the cost per message
decreases because it is only necessary to setup
the message once per broadcast cycle. Contrary
to this reduction in scaled message cost, each
CPU is required to broadcast to more processors
using (p−1) paths. These two opposing effects
are responsible for the asymptotic capacity bound
A(∞) in equation (1). Amdahl scaling is most
appropriate for modeling workloads containing
many similar threads, each of which must
occasionally be updated before continuing.
Numerical or financial workloads have this
property.

Geometric scaling: The MPE arises from a BUCKET
BRIGADE interaction. Each CPU can only interact
with its nearest (inline) neighbor. As the system is
scaled up, the overhead per message increases
due to the amount of work done by each CPU in
passing messages along to remote processors.
Counterbalancing this increasing cost per
message are the vastly fewer message paths
available as CPUs are added. Looking at Figure
15, for example, you can see there are only 2
arrows per CPU. Like Amdahl scaling, these two
competing effects are responsible for the

asymptotic capacity bound G(∞) n equation (2).
Geometric scaling is probably most suited to
architectures like binary hypercube MPPs. There,
all communication occurs via hops between
neighbors (vertices) in the respective cube.

Multiprocessing -- The Movie

Figure 17 shows a typical shared-memory MP
architecture. It comprises a set of processors (aka
CPUs or engines) each with their own private
memory, also called a cache memory (CM) or High
Speed Buffer (HSB), and all connected to each
other and main store by a common bus. This bus
also connects the I/O subsystem to the processors
and main memory. This architecture is common to
most mainframes and open systems
multiprocessors. Certain variations, such as the
use of multiple memory buses, are based on this
theme [Gunther 1997].

 Shared Memory Bus

 CPUs
 ...CM

Main
Store I/O

CM CM

Figure 17. A typical multiprocessor architecture.

To better understand our pictorial analysis, we
consider a much simplified schematic
representation in Figure 18. In particular, we drop
the I/O subsystem by assuming that all workloads
are CPU-intensive and we reduce the bus to a
simple line. The simplified MP schematic can be
used to enumerate some of the most common
processor interactions that occur in a real MP.

There are two basic operations that can be
performed on an MP: read data or write data. The
details of how these basic operations are
implemented varies somewhat across vendor
platforms. In this paper we are only interested in

the gross features of MP interactions and they can
be summarized as follows. First, consider a read
operation.

A processor (CPU 1 in Fig. 18) needs new data,
so it puts a read-request on the bus (usually
costing 1 bus cycle). Since every device listens to
all operations that go across the bus, the read
acts like a broadcast request to all processors and
main memory. Figure 18 depicts the case where
main memory has the most recent copy of the
requested data, so it responds by addressing the
data to CPU 1, and placing it on the bus for
delivery.

1 2 3 4

Figure 18. Main memory responds to the read-
data request broadcast by processor 1.

An alternative scenario is shown in Figure 19. In
this case CPU 3 had the most recent copy of the
data (because it just updated that datum in its
cache) and it responds instead of main memory (a
pairwise exchange).

1 2 3 4

Figure 19. CPU 3 responding to CPU 1.

The other basic operation is a write to main
memory. This operation is depicted in Figure 20.
At some point, the processor caches need to be
informed that their data is now stale with respect
to main memory. This is accomplished with an
invalidate operation being put on the bus. The
invalidate may be broadcast simultaneously with
the write (called write-through) or it may occur later
(called write-back). This subtlety is a fine point for
our discussion and we can ignore it here.

1 2 3 4

Figure 20. Write with cache invalidate broadcast.

Another gross interaction arises when new data is
needed by the processor because that data is not
resident in its cache (Figure 21). In that event,
some resident cache blocks need to be replaced
with blocks from main memory that contain the
required data. A replacement request is made
and main memory responds directly.

1 2 3 4

Figure 21. Cache line replacement in CPU 1.

Clearly, the frequency of cache block replacement
will depend on (i) the locality of the data in each
cache, and (ii) the size of each cache. How well
the data fits in the cache is a function of the way
the application is written and compiled (optimized)
i.e., software can play a big role in the MPE.

The coding of software locks can also be
significant in determining the magnitude of the
MPE. Figure 19, for example, might also depict a
lock being transferred from CPU 3 to CPU 1, but in
the next few cycles CPU 3 might want to test if
the lock is free yet, and that causes it to be
transferred back to its cache. This "ping-ponging"
of locks can cause serious MPE, and the more
processors, the worse it can become.

Two Thumbs Up?

Now let's compare the "movie" with our pictures.
We knew at the outset that the three equational
models were simple-minded; that's what makes
them easy to use. What has not been understood
before, is the nature of the naiveté in each model.
Our parallel pictures reveal it for the first time.

Relative to what goes on in real MPs, we can state
the following differences:

• Bus-reads and bus-writes typically have very
different cycle times (e.g., a factor of 2) in a
real MP. In the capacity models, reads and
writes are weighted equally.

• Main memory and bus access times are
usually different in real MPs. In the capacity
models, they are implicitly lumped into the
cost of arrows.

• Some real MP interactions, such as cache-line
replacement, are unaccounted for in the
models.

• The dispatcher (MVS) or scheduler (Unix) will
contribute to MPE depending on the setting of
various O/S tunables such as, affinity and
priority controls.

So the MPE is determined by both the workload
instruction-stream and the details of the platform
implementation e.g,. cache size and O/S
scheduling. None of the three capacity models,
however, can distinguish the hardware and
software contributions to MPE. We'll return to this
point in the next section.

In light of these discrepancies, it is astounding
that such simple-minded equational models can
be useful at all! The full explanation for this would
take us too far afield, suffice to say, it hinges off
relative time-scales (see Chapter 0 of [Gunther
1997]). The overall conclusions are:

• None of the actual MP interactions reflect the
nearest-neighbor exchanges that underlie the
Geometric model. In general, this model
appears unrealistic.

• There are broadcast interactions in real MPs.
These typically take about 1 bus cycle and
perhaps a fraction of a cycle to set a 'dirty' flag
on the datum in the cache. The Amdahl
model should be valid when broadcasting (or
serialization) dominates the workload e.g.,
long-running numerical (financial) calculations.

• Pairwise interactions occur with the highest
frequency but typically between processors
and main memory. The Quadratic model views
all interactions as occurring between CPUs
only. This apparent oversimplification may be
a blessing rather than a cardinal sin.

From the dynamics revealed by our processing
pictures, we see the Amdahl scaling model
corresponds to the most efficient but least
frequent interaction. Geometric scaling is almost
as efficient as Amdahl scaling but appears quite
unrealistic for MP architectures. Quadratic scaling
is the least efficient but possibly the most realistic
interaction model, since CPU-to-CPU and CPU-to-
Memory interactions are a common occurrence in
real MPs.

Finally, we indicate how these new insights can be
applied to a realistic example of capacity planning.

ILLUSTRATIVE CAPACITY CALCULATION

We follow the CICS transaction example discussed
in [Kraus 1995]. Six independent regions can be
dispatched under MVS. Hence, there is potential
to use 6 engines (one per region) but MPE will be
a limiting factor.

VTAM TOR

AOR1

ROR FOR

AOR2

Figure 22. CICS regions.

How can we use our new insights about MPE to
determine the optimal number of engines? First,
we need to determine the respective model
parameters. On the basis of the foregoing
discussion, we ignore Geometric scaling as
unphysical. That leaves two parameters: the
seriality constant σ in the Amdahl model, and the
g-factor in the Quadratic model. These parameter
values can be determined from the CPU service-
demands shown in Table 3 [Kraus 1995].

Table 3. CICS service times

Region CPU-msecs
VTAM 1
TOR 5
AOR1 38
AOR2 40
ROR 6
FOR 10

The minimum time for a CICS transaction to be
processed is Rmin = (1 * 1) + (1 * 5) + (2 * 18) + (1
* 6) + (1 * 10) = 61 msecs. The underlined term
arises from the fact that the CICS transaction is
processed by AOR1 or AOR2, but not both. The
time for the AOR step is therefore the average:
(40 + 38)/2 = 39 but each region can be running
concurrently on 2 separate CPUs. Hence, the
time is 18 msecs for each and the number of
CPUS is 2. The other regions run on a single
CPU.

Amdahl: The seriality constant is computed from
the average of the CPU service demands (Davg)
as follows:

Davg = Rmin/6 = 10.17 msecs
σ = 1/Davg = 0.0984

The asymptotic capacity is A(∞) ≈ 1/σ = 6.00 CPU
equivalents if there were an infinite number of
physcal CPUs available.

Quadratic: What about the g-factor? Table 1 tells
us how to compute that quantity. If σ = 1/Davg,
then g = 1/(1 + Davg) = 1/11.17 = 0.0895. The
maximum capacity will occur at pmax =
1.0895/0.17890 = 6 physical CPUs and produce
an effective capacity of Qmax(6) = 6 * (1 − 0.0895
* 5) = 3.32 CPU equivalents.

So, the bounds on capacity at 6 physical CPUs is
4.02 if we use Amdahl scaling and 3.32 if we use
the Quadratic model. In other words, the MPE
represents a loss of 1.98 CPU units according to
the (optimistic) Amdahl model, and 2.68 CPU units
according to the (pessimistic) Quadratic model.
Now you, as the capacity planner, get to choose
which model is more accurate. But you should no
longer be making that judgement based simply on
curve-fitting. You only need to ask yourself, Does
CICS processing induce more broadcasting (or
serialization), or more pairwise interactions? I leave
that for you to picture.

Processors (p)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 5 10

Figure 23. Capacity projections for the CICS
workload. The curves are: Amdahl (∆), and
Quadratic (q), hardware (balanced) bounds on
capacity, and the dotted line is the software lower
bound on capacity due to workload imbalance.

Finally, it should be noted that the capacity
models we've been discussing give the harware
(upper) bound on capacity because they implicitly
assume that the workload is well balanced. If it
isn't, as in this CICS example, the software
imbalance may dominate the available capacity.
The software lower bound for the CICS example is
shown as the dashed line in Figure 23.
Depending on the actual degree of MPE, the
realized capacity will fall somewhere within these
two bounds.

ACKNOWLEDGMENTS

Thanks go to Mark Friedman, Irwin Kraus, Jim
McGalliard, Rich Olcott, Lois Robinson, and the
CMG reviewers for comments that improved the
clarity of this paper.

NOTES

1. Asymptotic capacity occurs in the (unphysical)
limit of an infinite number of processors. We
can track progress toward the asymptote using
equation (1) e.g., A(1000) = 29.38, and
A(10,000) = 29.91. Clearly, A is approaching
the value 1/σ = 30, denoted A(∞) in the text.

2. We need a common basis for comparing the
divergence in the capacity predicted by each
model. If we actually measured σ, Φ, and g,
we'd expect them to be different from each

other. We also expect least divergence (due to
overhead) at 2 CPUs. A simple expedient is to
assume that each model predicts identical
capacity at p = 2, then we can simply calculate
the values shown in Table 1 with little error.

3. What's really new about these diagrams is the
weight assigned to each arc. That requires
intimate knowledge of each capacity model
expressed as a discrete series [Gunther
1997]. As far as this author aware, this is
completely novel. The Amdahl and Quadratic
diagrams are particular planar, fully-connected
graphs called complete graphs [Chartrand
1977] p.30. The Geometric graphs are simply
one-dimensional Markov chains.

REFERENCES

Amdahl, G. 1967. Validity of the Single Processor
Approach to Achieving Large Scale
Computing Capabilities. AFIPS Conf. Proc.
30 : 483-485.

Artis, H. P. 1991. Quantifying Multiprocessor
Overheads, Proceedings CMG’91 Conference
pp. 363-365.

Chartrand, G. 1977. Introductory Graph Theory,
Dover.

Fitch, J. L. 1992. LSPR Processor Benchmarks:
IBM’s Approach to Large Processor Capacity
Evaluation. Document GG66-0232. IBM
Washington Systems Center. IBM Corporation.

Gunther, N. J. 1993. A Simple Capacity Model for
Massively Parallel Transaction Systems.
Proceedings CMG '93 Conf, Dec. 5-10, San
Diego, Cal. pp. 1035-1044.

Gunther, N. J. 1995. Assessing OLTP Scalability
for Massively Parallel Processors. Capacity
Management Review. 23(11): 1-22.

Gunther, N. J. 1997. The Practical Performance
Analyst. McGraw-Hill. In press.

Hennessy, J. L., and Patterson, D. A. 1990.
Computer Architecture: A Quantitative
Approach. San Mateo: Morgan Kaufmann.

Kraus, I. F. 1995. The Role of Symmetry in the
Parallel Sysplex. Proceedings CMG '95 Conf,
Dec. 3-8, Nashville, Ten. pp. 106-117.

McGalliard, J. W. 1995. Case Study of Table-Top
Sizing with Workload-Specific Estimates of the
Multiprocessor Effect. Proceedings CMG '95
Conf , Dec. 3-8, Nashville, Ten. pp. 208-217.

Major, J. B. 1986. A Methodology of Processor
Capacity Comparison. Proceedings CMG '86
Conference pp. 241-24

