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ABSTRACT
We examine some well-known but disparate paramet-
ric performance models that are frequently used for the
performance analysis of parallel applications running on
message-passing architectures. Examples of such para-
metric models include: Amdahl’s law, Gustafson’s quasi-
linearized scaleup, harmonic speedup, and LogP-typemod-
els. By invoking aparadigm shift to amoregeneral queue-
theoretic model–theMachineRepairman Model (MRM)—
each of these apparently unrelated parametric models is
seen to correspond to a particular choice of possible MRM
parameter mappings. In this way, all of the above ad hoc
parametric modelsaresubsumed by asingleunified model
which, in turn, simplifies the framework for performance
analysis. More significantly, the unified MRM variables
offer a way to identify bottlenecks and other sources of
performancedegradation. Conventional parametric models
cannot provide this level of performance information be-
cause it is lost within their respectiveparameter values. We
demonstrate the advantages of MRM by applying it to the
analysis of benchmark measurements on several message-
passing platforms.
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1 Int roduction

With the advent of new interconnect technologies (e.g., in-
finiband, myrinet), message-passing protocols [2, 3], local
cluster architectures and global GRIDs, there arises the in-
evitable need for performance comparisons. A variety of
ad hoc performance models have cropped up in an attempt
to assess each of these differing architectures. A perennial
favorite is Amdahl’s law [6], and it’s generalizations [11]
as well as the more recent LogP model [4, 14] and its ex-
tensions [1].

Because of the variety of performance models avail-
able, the question naturally arises: Which of them is best?
To someextent thisquestion can bedecided on thebasisof
which modeling parameters can be measured. What has
not been recognized before is that each of these ad hoc
models represent a special case of a more general queue-
theoretic model—the Machine Repairman Model (MRM).

This paper presents MRM and demonstrates how it super-
sedes each of theabove-mentioned parametric models.

There are pitfalls in using ad hoc parametric mod-
els because they can lead to anomalous performance pre-
dictions for large-scale systems [9]. Our emphasis, there-
fore, is on developing a physically consistent formalism
that avoidspossibledescent into ameaninglesscurvefitting
exercise. What is needed is a consistent understanding of
theunderlying dynamics inherent in theseparametric mod-
els. By dynamics we mean an explanation that includes
interaction effects between physical components of the ar-
chitecture under consideration. Unfortunately, no unified
dynamical interpretation of these parametric models exists
in the literature. In this climate, it has even been suggested
that Amdahl’s law has no physical meaning and therefore
has no “l egal” standing [17]. On the contrary, we have al-
ready shown elsewhere  [8] that  Amdahl’s  law doeshave
a definite physical interpretation in terms of a directional
broadcast protocol. We take up this point further in Sect. 3
as well as identify Amdahl’s law with our MRM model.

We introduce a particular queue-theoretic model as
a plausible unifying framework to reveal the correct mes-
saging dynamics. Although our interest in the messag-
ing dynamics, we show in subsequent sections that only
steady-state, rather than transient, solutions are required
to derive the parametric performance models of interest.
Steady-state implies that time-averaged queueing variables
can be replaced by ensemble averages [7]. Similarly, we
show that steady-state benchmark measurements, used to
determine parameters for one model, can also be mapped
to another model under the appropriate parameter transfor-
mations summarized in Fig. 7.

Although the performance of message-based architec-
tures has been studied previously using analytic queueing
models [See e.g., 18], as far as we are aware, there has been
no focus on applying queueing models to unifying paramet-
ric bounds for parallel speedup and latency.

2 The MRM Model

A typical message-passing multicomputer architecture is
depicted schematically in Fig. 1. In the context of the so-
called LogP model, which we take up in more detail in
Sect. 7, message-passing performance can be parameter-
ized in terms of the interconnect latency (L), the message
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processing overhead (o), the message generation rate (g)
and the number of physical processors (P ). Hence, the
name.
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Figure 1. Generic multicomputer with interconnection net-
work comprisingP processors with their respective caches
C and local memoriesM . The parametric model is dis-
cussed in Sect. 7.

The particular case of a queueing model with just one
routing stage (k = 1 in our notation) in the interconnect
network, is known in the operations research and computer
performance literature [7, 10, 15] as theMachine Repair-
man Modelor MRM. The name need not concern us here,
suffice to say its historical roots lie in the performance anal-
ysis of manufacturing assembly lines. In Sect. 7 we shall
generalize to interconnects withk > 1 stages but retain the
name MRM for clarity. Multi-hop stages inevitably require
the use of queueing network solvers [See e.g., 10, 15].

Table 1. MRM parameters associated with Fig. 2

P Number of active processors
Z Mean execution time at a processor
X Mean system throughput
Dk Mean interconnect latency fork routing stages
Dmax Bottleneck latency
D Minimum interconnect latency
R Interconnect latency including waiting time

The correspondence between the two diagrams can
be easily understood as follows. The processing nodes la-
beledPCM in Fig. 1 become the set of circles (infinite
servers [15]) at the top of Fig. 2; the memory modulesCM
are not drawn explicitly. Similarly, the cloud labeledin-
terconnect networkin Fig. 1 is represented by the queue-
ing center in the lower part of Fig. 2. An important at-
tribute is that requests and responses circulate from theP
processors to the queue and then feed back to the proces-
sors. No requests enter or leave the MRM system and the
identity of which processor is sending messages and which

Bus requests

P 

processors

D

Interconnect/bus latency R

Z 

execution time

Figure 2. Representation of the multicomputer in Fig. 1
as a queue-theoretic Machine Repairman Model (MRM).
Machines correspond to processors (P ) each with mean
execution or “up” timeZ. Machines that are “down” are
queued at a repairman who takes a mean service timeD.
The queue length determines the corresponding intercon-
nect network latency of the message-passing architecture.
Cache and memory delays are also included in the queue-
ing timeR. See Table 1.

is receiving is not enumerated since the system is calcu-
lated in steady-state. It is possible to extend MRT to distin-
guish between requests and response by introducing multi-
ple classes of traffic [10], but we shall not require that level
of sophistication for the subsequent discussion.

The steady-state variables that define the performance
of the MRM queueing model are defined in Table 1. From
these parameters it follows that

Dmax = Max(D1, D2, . . . , Dk) (1)

and the minimum network latency is

D =
∑

k

Dk (2)

The mean system throughput in Fig. 2 is defined by

X(P ) =
P

R (P ) + Z
(3)

BothX andR are implicit functions ofP , which is reflec-
tive of the feedback flow in Fig. 2, so (3) must be calculated
using an analytic queueing solver [See e.g., 10, 15]. Here,
however, we are mostly interested in performance bounds
rather than the full performance characteristics. One such
bound is the maximum achievable throughput

Xmax(P ) =
1

Dmax
(4)

which is controlled by the bottleneck latency.
Another throughput bound is due tosynchronous

queueing where allP processors suspend execution and is-
sue a request message simultaneously. Then, the latencyR
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to traverse the interconnect is the product of the mean time
D that it takes to route each message and the total number
of messagesP in transit i.e.,R(P ) = P D. Substituting
into (3) produces

Xsyn(P ) =
P

PD + Z
(5)

Although this bound is known in queueing theory [15],
its connection with Amdahl’s law, which we derive next,
seems not to have been recognized previously.

3 Fixed Size Bounds

An empirical measure of parallel performance is the
speedupratio

S(P ) =
T1

TP
(6)

whereTP is the elapsed time onP processors. The elapsed
time T is equivalent to the execution timeT1 on a unipro-
cessor. The remaining timeTP can then be reduced by
partitioning the application acrossP processors running in
parallel. Symbolically,

T1 = T and TP = σT + (1− σ)
T

P
(7)

Substituting (7) into (6) and simplifying produces Am-
dahl’s law [19]

SA(P ) =
P

1 + σ (P − 1)
(8)

for a fixed size workload with the percentage of time spent
in uniprocessor mode expressed in terms of a single pa-
rameter (σ), known as theserial fraction, having range:
0 ≤ σ ≤ 1. In the infinite processor limit, the speedup
(8) becomes

lim
P →∞

SA(P ) =
1
σ

(9)

This limit can be interpreted as the best achievable speedup
whenσ−1 processors are running 100% busy. For exam-
ple, if the serial fractionσ = 0.10 then the speedup limit
corresponds to10 saturated processors.

A more physically revealing form of Amdahl’s law
can be written in terms of the message-exchange diagrams
shown in Fig. 3. Then, (8) can be re-expressed as the differ-
ence between ideal linear speedup and an associated inter-
processor messaging overhead

SA(P, k) = P −G(P, k)P (P − 1) . (10)

Here,k = 1/σ, and the cost of inter-processor messaging

G(P, k) =
1

k + (P − 1)
(11)

corresponds to theP -th term of aharmonic series(see Ta-
ble 2) and is depicted by the arrows in Fig. 3. IfP = 4

1/ /(k+2)1/(k+2)

1/(k+1)1/(k+1)

1/(k+3)

Figure 3. Pictorial representation of Amdahl’s law for P
= 2, 3, and 4 processors (vertices) where each arrow repre-
sents the direction of the current communication cycle with
rational overheadσ = 1/k

Table 2. Amdahl cost functionG(P ) expressed in terms of
the parameterk and the serial fractionσ

P 1 2 3 4 5
Gk(P ) 1

k
1

k+1
1

k+2
1

k+3
1

k+3

Gσ(P ) σ σ
1+σ

σ
1+2σ

σ
1+3σ

σ
1+4σ

and the serial fractionσ = 1/7, then both (8) and (10) pre-
dict a speedup ofSA(4) = 2.80 where the second term in
(10) corresponds to the 4-node diagrams in the last row of
Fig. 3.

Equation (10) can also be interpreted as a kind
of broadcast interaction where the requesting processor
causes every other processor to halt execution and listen
to the message [8]. The processors then respond cyclicly in
the same way. Although the broadcast cost in Table 2 for a
single processorG(1) is non-zero under this interpretation,
the total overhead in (10) is zero due to the(P − 1) factor
in the second term. The broadcast interpretation does not
represent anefficient interaction, only a logicallycorrect
interaction associated with Amdahl’s law. Next, we show
that (8) and (10) have a related physical interpretation un-
der the MRM model.

To see this connection, let

σ =
D

D + Z
(12)

such that the range ofσ values is determined by MRM vari-
ablesD andZ

σ →

 0 asD → 0, Z = const.

1 asZ → 0, D = const.
(13)

Whenσ = 0 the interconnect latencyD is zero because
there is maximal execution timeZ with no messages ex-
changed between processors. Consequently, there cannot
be any queueing contention in Fig. 2. Conversely,σ = 1
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corresponds to zero execution time and maximal queueing
latency on the communication network.

Substituting (12) into (8) produces

SA(P ) =
P (D + Z)
PD + Z

(14)

which can be interpreted immediately in terms of the syn-
chronous throughput (5). Amdahl speedup (14) is the ra-
tio of the synchronous throughput withP processors to the
synchronous throughput on a single (P = 1) processor.
See Appendix A for the complete derivation. Amdahl’s law
therefore corresponds to worst-case queueing in our MRM
model. It is the speedup bound for synchronous messaging,
which can also be regarded as the queueing analog of the
broadcast protocol defined by (10). Once again, we are not
trying to identify the most efficient messaging protocol but
rather, the correct dynamics expressed by Amdahl’s law.

4 Harmonic Bounds

Although Amdahl’s law constitutes the worst-case queue-
ing bound in MRM parlance, even lower bounds on
speedup do exist [5, 6]. For the sake of completeness, we
briefly consider how they can be interpreted within the con-
text of the MRM model.

If the workload is equally likely to make use of any
subset of processors (equipartitioning), the speedup be-
comes

SH(P ) =
P

1 + 1
2 + 1

3 + . . . 1
P

(15)

Since the harmonic series in the denominator can be ap-
proximated by

P∑
n=1

1
n
' ln(P ) , (16)

an upper bound on the equipartitioned speedup is

SH(P ) ' P

ln(P )
(17)

From the standpoint of MRM,SH has to be viewed as a
worse than worst casespeedup bound (SH � SA) as evi-
denced so graphically in Fig. 4. Benchmark measurements
that conform to (17) are likely to be a signal that serious
performance tuning is required, although exceptions can
arise e.g., a Divide-and-Conquer algorithm might produce
this kind of speedup characteristic where the logarithm in
(17) is expressed in base-2.

If, instead of the harmonic sum (16) ofall possible
processing subsets, we consider theharmonic meanµHP

of two extreme subsets of processors

1
µH2

=
1
2

(
1
P1

+
1
P2

)
(18)

whereP1 = κ is a CPU-saturated subset of the entire par-
allel setP2 = P , then

µH2 =
2 κP

κ + P
(19)
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Figure 4. Speedup bounds forσ = 0.01. SA is the syn-
chronous speedup, the harmonic mean (20) is superim-
posed on the same curve,SE is the asynchronous speedup,
SG the near-linear scaled speedup and the lowest curveSH

is the equipartitioned speedup (17)

Replacing the constantκ with the inverse of the serial frac-
tion σ, we find that (19) is related to (8) by

SA(P ) ' 1
2

µH2 (20)

In other words, the asynchronous Amdahl bound is ex-
tremely well approximated (to within 1% error in Fig. 4)
by half the harmonic mean of the maximally parallel and
maximally saturated processor subsets.

This connection between Amdahl’s law and harmonic
bounds (17) and (19) is discussed in [5, Chap. 8] and [6,
Chap. 3] but otherwise seems not to be widely known. The
MRM model makes it clear via the appropriate choice of
parameter mappings (Fig. 7).

5 Scaled Size Bounds

It has been recognized for some time that predicting paral-
lel speedup for real problems can differ from that predicted
by Amdahl’s law because the percentage of time (σ) spent
in sequential sections of the program can depend on the size
of the problem. Scaling up the problem size can improve
speedup as follows.

If the serial fraction is assumed to vary linearly with
P , the speedup (6) becomes

S(P ) =
T1

TP
=

σ + (1− σ)P
σ + (1− σ)

(21)

which simplifies to

SG(P ) = P + σ(1− P ) (22)

By analogy with Sect. 3, (22) is sometimes referred to as
theGustafson-Baris law[11] which has been demonstrated
for certain parallel applications [12].
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The relationship to the MRM model is easily deter-
mined by substituting (12) into (22) to produce

SG(P ) =
D + PZ

D + Z
(23)

If we invoke the change of MRM variableZ 7→ Z ′/P , (23)
becomes

SG(P ) =
P (D + Z ′)
PD + Z ′

(24)

which is identical to (14). See Appendix B for the deriva-
tion. Once again, we have arrived at a well-known para-
metric performance model by identifying the correct set of
variables in the unifying MRM model (see Fig. 7).

The MRM interpretation of Gustafson’s law (22) is
that rescaling offsets the impact of the synchronous queue-
ing by inflating the mean execution timeZ in direct pro-
portion to the number of processorsP . In other words,
rescaling the problem size minimizes message traffic on the
network.

6 Erlang Model

The near-linear speedups implied by (22) are generally ex-
tremely difficult to achieve in practice. Based on the MRM
analysis of Sect. 3, a more attainable compromise would be
asynchronous messaging. The asynchronous speedup can
be determined from this queueing formula

SE(P ) =
1
σ

{
1− EB

(
1− σ

σ
, P

)}
(25)

whereEB(A,P ) is the Erlang B function [10]

EB(A,P ) =
AP

P !∑P
k=0

Ak

k!

(26)

with A = Z/D theservice ratiofor Fig. 2. We have used
the definition ofσ in (12) to rewrite the service ratio as
A = (1− σ)/σ in (25).

The factor1− EB in (25) is the probability that the
interconnect network is busy. It is usually more convenient
to compute (26) using the following recursive algorithm:

erlangB = A / (1 + A);
for (k = 2; k <= P; k++) {

erlangB *= A / (A * erlangB + k);
}

which accumulates the result in the variableerlangB .
The idea that asynchronous speedup effects can be

predicted using (25) seems to be entirely novel and is a
direct consequence of realizing thatSA(P ) in Sect. 3 de-
scribes the synchronous MRM dynamics of Fig. 2. A com-
parison ofSE andSA is provided in Fig. 4 for a serial frac-
tion of σ = 0.01. It is noteworthy that, althoughSE offers
greater speedup due to asynchronous messaging, the infi-
nite processor asymptoteS∞ = 100 is reached at a smaller
configuration of physical processors (P < 128) than for

SA. The reason for this can easily be explained in terms of
MRM queueing effects (Fig. 7).

From Sect. 3,SA is associated with the lower bound
on the normalized throughput due to maximal synchronous
queueing in the network. Under light messaging loads
(P < 64 in Fig. 4), the speedup is essentially linear ris-
ing because the asynchronous messaging due to each addi-
tional processor creates relatively little queueing contention
in the network. However, at some point (P ≥ 128 in Fig. 4)
the network saturates (i.e., reaches100% busy routing mes-
sages) and becomes the bottleneck.

In Sect. 2 the bottleneck was identified withDmax

(the longest of the routing times for ak-stage interconnect)
because it controls the maximum available throughput by
virtue of (4). Any messages coming from faster routers
upstream simply make the bottleneck queue longer, while
faster downstream routers remain underutilized waiting for
completions at the bottleneck. In Fig. 4,Dmax is associ-
ated with the normalized throughput becoming bounded at
S∞ = 100.

7 LogP Model

LogP [4] is a latency model rather than a speedup model.
Unlike the single parameter speedup models we have dis-
cussed so far, LogP has four parameters which can be mea-
sured directly [14]. Because of the correspondence be-
tween Figs. 1 and 2, however, the mapping between the
original LogP parameters and the MRM variables of Sect. 2
is the most direct of all and can be summarized as follows:

LogP ≡


L Latency 7→ D or R
o Overhead 7→ Zmin/2
g Generate 7→ Z/P
P Processors 7→ P

(27)

Taken collectively, these parameters (which also annotate
Fig. 1) give this latency model its name.

Although LogP intrinsically involves asynchronous
messaging, the original formulation of the model [4] had
no communication contention i.e., no queueing (L 7→ D)
in MRM parlance. Taking as an example the measured
nCUBE2 parameters reported in [4], with message size
M = 160 bits, channel widthW = 1 bit, mean routing
hopsH = 5, mean network latencyL = 360 cycles and
g ≡ 2o = 6400 cycles, the minimum round trip time is

RTTmin = L + g = 6, 700 cycles (28)

This is equivalent to the MRM response time

R = D +
Z

P
(29)

with zero contention i.e.,P = 1 where it is assumed that
there can be no more than one outstanding message per
processor in transit. Moreover, since we knowD andZ
from (29), we can apply (12) to estimate that the serial
contention isσ = 0.0274 for the nCUBE2. Surprisingly,
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even though LogP is traditionally used as a latency model
we can assess its speedup characteristics using the MRM
mappings in Fig. 7.

MRM can provide deeper insight into LogP con-
tention effects but, as noted in Sect. 2, with multiple queue-
ing stages representing a multi-hop network we need to use
an analytic queueing solver [See e.g., 10] since each stage
could have different service timesDk (cf. Table 1). With
such tools we can predict the full latency characteristics for
the nCUBE2 in Fig. 5 withk = 5 hops.
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Figure 5. Latency characteristics computed using the
MRM generalization of the LogP model of nCUBE2.

The lowest latency curve (bottom) corresponds to a
mean execution time ofZ = 128, 000 cycles, while the
highest latency curve (top) corresponds toZ = 12, 800 cy-
cles; the longer execution time producing fewer messages.
Even for the latter case, however, theRTT grows from 360
cycles atP = 1 to almost 36,000 cycles under contention
from P = 1024 processors. The ability to overlap mes-
sages could significantly reduce this contention.

In MRM, theoptimal processor configurationis asso-
ciated with the knee in the classic “hockey stick” character-
istic; like those shown in Fig. 5. That knee can be predicted
from

Popt =
D + Z

Dmax
(30)

the ratio of the minimumRTT to the bottleneck latency
(see Sect. 2). Mapping the MRM variables back to the
LogP model, we find (30) corresponds to

L + 2o

dM
W e

(31)

which is the ratio of the minimumRTT in (28) to the bi-
section bandwidth [4]. For the nCUBE2 configurations in
Fig. 5,Popt(Z = 12.8K) = 81, Popt(Z = 64K) = 401,
andPopt(Z = 128K) = 801 processors, respectively; well
below theP = 1024 available.

Extensions to LogP such as LogGP accounting for
longer messages [1], the inclusion of memory models [3],
and applications to MPI [2, 14] can also be included as ex-
tensions to MRM but we do not pursue them here.

8 Speedup Measurements

In this section, we compare the MRM model predictions
with published benchmark measurements. Figure 4 shows
the relationship between the various speedup models with
σ chosen to be 1% producing an asymptote atS∞ = 100
for clarity. Both the synchronous speedupSA in (14) and
the asynchronous speedupSE in (25) approach this asymp-
tote but at different rates. Asynchronous messaging pro-
vides better speedup belowP ≈ 100 but saturates more
rapidly than synchronous messaging.
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(a) nCUBE2 speedup measurements and predictions.
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(b) Paragon speedup measurements and predictions.

Figure 6. Comparison of speedup measurements with
MRM predictions for (a) the nCUBE2 and (b) the Intel
Paragon.

Speedup measurements using a Jacobian solver
benchmark [16] are plotted for the nCUBE2 in Fig. 6(a)
and for the Intel paragon in Fig. 6(b) running theMPICH
implementation of MPI. We used statistical regression anal-
ysis to estimate the respectiveσ parameters and found
σ̂ = 0.0181 for the nCUBE2 and̂σ = 0.0105 for the Intel
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Paragon. The predicted speedup curves were then calcu-
lated using (8) for the synchronous case, and (25) for the
asynchronous bound.

Clearly, the nCUBE2 benchmark data fall mostly in
the synchronous curve. The measured speedup adheres
closely to Amdahl’s law which implies that there is signif-
icant contention on the interconnect network (Sect. 3). We
are unable to determine the cause of that contention from
the published data. Conversely, the measured speedup may
be the best that can be achieved on that generation of hyper-
cube topology running theELLPACK benchmark workload.
Those details notwithstanding, data of this type suggests
that further investigation for performance tuning opportu-
nities is likely to be worthwhile.

The Paragon benchmark data reveals a subtlety differ-
ent behavior. For configurations withP ≤ 8 processors, la-
tencies on the mesh topology [18] are relatively small and
the speedup is almost linear. AtP = 16 processors and
above, however, messaging appears to become more syn-
chronized and, once again, the speedup falls onto the Am-
dahl bound.

9 Conclusion

Parametric models play an important role in analyzing the
performance of message-passing architectures but, as we
have tried to demonstrate in this paper, they should be
grounded in a physically meaningful dynamics to avoid in-
correct or inaccurate performance predictions. We have
shown elsewhere [9] the dangers of constructing unphys-
ical parametric models to assess multiprocessor scalability
because they can lead to anomalous performance predic-
tions for large-scale systems. Once properly defined and
understood, however, parametric models are often more
convenient to apply than complex queueing models or sim-
ulations.

That said, however, we should recognize that even a
physically meaningful parametric model suffers the intrin-
sic limitation that what makes it convenient also makes it
opaque. Benchmarks and regression analysis can be used
to determine the value of its parameters. If the estimated
parameter values and projected speedups are declared un-
satisfactory, it is not possible to use the parametric model
in reverse to determine precisely where the performance
problems lie in the measured system. Such information has
been lost within the modeling parameters. In that sense, the
convenience of parametric models is a one-way street.

The MRM framework defined in Sect. 2 provides a
unified physical interpretation for the parameters in each
of the models summarized in Fig. 7. The ability to rede-
fine a single ad hoc parameter in terms of several physical
variables underlies the power of the MRM approach and it
quickly narrows the search for available performance tun-
ing opportunities in actual systems. As far as we know,
this has not been achieved before. Finally, we note that
MRM can provide insight into sizing buffers. Although
buffering can introduce longer latencies than may be de-
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Figure 7. Mappings between MRM variables and paramet-
ric model parameters.

sirable for many scientific and engineering applications,
it seems inevitable that buffering will play a more sig-
nificant role for general-purpose applications running on
newer computational architectures such as distributed clus-
ters and GRIDs [13].
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Appendices

We derive the Amdahl boundSA(P ) using the MRM vari-
ables defined in Section 2, and then we transform that result
into the linearized formSG(P ) of Section 5.

A Derivation of SA(P )

Let the elapsed time on a uniprocessor be

T1 = D + Z (A-1)

and on a multicomputer withP physical processors

TP = σT1 +
(

1− σ

P

)
T1 (A-2)

From (6) the parallel speedup is

SA(P ) =
D + Z

σ(D + Z) + (1− σ)
(D+Z

P

) (A-3)

Substituting (12) into (A-3) and collecting terms

=
D + Z

D + D+Z
P − D

P

=
P (D + Z)
PD + Z

(A-4)
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which establishes the equivalence of (14) and (A-4).

B Derivation of SG(P )

Rearranging (22) to read

SG(P ) = σ + P − σP (B-1)

and substituting (12) into (B-1) we have

SG(P ) =
D

D + Z
+ P

D + Z

D + Z
− p

D
D + Z

=
D + PZ + PD − PD

D + Z
(B-2)

which, upon collecting terms, simplifies to (23). The rela-
tionship between (B-2) and (14) can be seen by rescaling
the execution timeZ 7→ Z ′/P

S′G(P ) 7→ D + Z ′

D + (Z ′/P )

=
D + Z ′

1
P (PD + Z ′)

=
P (D + Z ′)
PD + Z ′

(B-3)

which has the same form as (A-4) and (14).
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