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ABSTRACT

We examire sonme well-known but dispara¢ paramet-
ric performane modek tha are frequenty usel for the
performane analyss of paralld applicatiors running on
message-pasgnarchitectures Example of sut para-
metric modek include Amdahls law, Gustafsois quasi-
linearizal scaleupharmonc speedupand LogP-type mod-
els. By invoking aparadign shift to amore generaqueue-
theorett model-tle Machire Repairma Modd (MRM)—
ead of thee apparentt unrelatel parametic modek is
sea to correspod to aparticula choice of possibé MRM
paramete mappings In this way, all of the albove ad hoc
parametic modek are subsumd by a single unified model
which, in turn, simplifies the framework for performance
analysis More significantl, the unified MRM variables
offer a way to identify bottleneclk ard othe source of
performane degradation Conventiond parametic models
canna provide this level of performane information be-
cauitislost within their respedtve parametevalues We
demonstrat the advantags of MRM by applying it to the
analyss of benchmak measuremeston severd message-
passimg platforms.
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1 Introduction

With the advent of new interconnettechnologis (e.g, in-
finiband myrinet) message-passrprotocok [2, 3], local
cluste architecture ard globd GRIDs, there arises the in-
evitable neel for performane comparisons A variety of
ad hoc performane modek have croppel up in an attempt
to assesead of the differing architecturesA perennial
favorite is Amdahls law [6], and it’s generalizatios [11]
as well as the more recern LogP modd [4, 14] and its ex-
tensiors [1].

Becaus of the variety of performane modek avail-
able the questio naturally arises Which of them is best?
To sone extert this questio can be decidel on the bass of
which modeling parametes can be measured Wha has
not been recognize before is tha ead of thee ad hoc
modek represeha specid cae of a more genera queue-
theoretc model—the Machire Repairma Modd (MRM).
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This pape presers MRM and demonstratehow it supe-
seda ead of the above-mentiond parametri models.

There are pitfalls in using ad hoc parametic mod-
els becaus they can lead to anomalos performane pre-
dictions for large-sca systens [9]. Our emphasisthere-
fore, is on developing a physically consisten formalism
that awids possibé descehinto ameaninglescurvefitting
exercise Wha is needd is a consistehunderstandig of
the underlyirg dynamisinherert in thes parametic mod-
els. By dynamis we mean an explanation tha includes
interaction effects betwea physicd componerg of the ar-
chitectue unde consideration Unfortunatey, no unified
dynamicé interpretatio of thes parametic modesk exists
in the literature In this climate it has even been suggested
tha Amdabhls law has no physicd meaniry and therefore
has no “legal” standirg [17]. On the contray, we have al-
read/ shown elsawhere [8] tha Amdahls law doeshave
a definite physical interpretation in terms of a directional
broadcasprotocol We take up this point further in Sect 3
as well as identify Amdahl’s law with our MRM model.

We introduce a particular queue-theoretic model as
a plausible unifying framework to reveal the correct mes-
saging dynamics. Although our interest in the messag-
ing dynamics, we show in subsequent sections that only
steady-staterather than transient, solutions are required
to derive the parametric performance models of interest.
Steady-state implies that time-averaged queueing variables
can be replaced by ensemble averages [7]. Similarly, we
show that steady-state benchmark measurements, used to
determine parameters for one model, can also be mapped
to another model under the appropriate parameter transfor-
mations summarized in Fig. 7.

Although the performance of message-based architec-
tures has been studied previously using analytic queueing
models [See e.g., 18], as far as we are aware, there has been
no focus on applying queueing models to unifying paramet-
ric bounds for parallel speedup and latency.

2 The MRM Model

A typical message-passing multicomputer architecture is
depicted schematically in Fig. 1. In the context of the so-
called LogP model, which we take up in more detail in
Sect. 7, message-passing performance can be parameter-
ized in terms of the interconnect latendy)( the message
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processing overhead)( the message generation ratg (
and the number of physical processor?).( Hence, the
name.

Processors —»

®)

0

Interconnect
network

S e e e —"

Figure 1. Generic multicomputer with interconnection net-
work comprisingP processors with their respective caches
C and local memoried/. The parametric model is dis-
cussed in Sect. 7.

The particular case of a queueing model with just one
routing stage X = 1 in our notation) in the interconnect
network, is known in the operations research and computer
performance literature [7, 10, 15] as thachine Repair-
man Modelor MRM. The name need not concern us here,
suffice to say its historical roots lie in the performance anal-
ysis of manufacturing assembly lines. In Sect. 7 we shall
generalize to interconnects with> 1 stages but retain the
name MRM for clarity. Multi-hop stages inevitably require
the use of queueing network solvers [See e.g., 10, 15].

Table 1. MRM parameters associated with Fig. 2

Number of active processors

Mean execution time at a processor

Mean system throughput

Mean interconnect latency férrouting stages
Bottleneck latency

Minimum interconnect latency

Interconnect latency including waiting time

The correspondence between the two diagrams can
be easily understood as follows. The processing nodes la-
beled PCM in Fig. 1 become the set of circles (infinite
servers [15]) at the top of Fig. 2; the memory modul&es
are not drawn explicitly. Similarly, the cloud labeléu
terconnect networln Fig. 1 is represented by the queue-
ing center in the lower part of Fig. 2. An important at-
tribute is that requests and responses circulate froni’the
processors to the queue and then feed back to the proces-
sors. No requests enter or leave the MRM system and the
identity of which processor is sending messages and which
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P Z
processors execution time

Bus requests

Interconnect/bus latency R

Figure 2. Representation of the multicomputer in Fig. 1
as a queue-theoretic Machine Repairman Model (MRM).
Machines correspond to processor?) ach with mean
execution or “up” timeZ. Machines that are “down” are
gueued at a repairman who takes a mean service fime
The queue length determines the corresponding intercon-
nect network latency of the message-passing architecture.
Cache and memory delays are also included in the queue-
ing time R. See Table 1.

is receiving is not enumerated since the system is calcu-
lated in steady-state. It is possible to extend MRT to distin-
guish between requests and response by introducing multi-
ple classes of traffic [10], but we shall not require that level
of sophistication for the subsequent discussion.

The steady-state variables that define the performance
of the MRM queueing model are defined in Table 1. From
these parameters it follows that

Doz = Max(Dy, Ds, ..., Dy) (1)

and the minimum network latency is
D=3 D,
k

The mean system throughput in Fig. 2 is defined by

P
R(P)+ 7

)

X(P) = (3)
Both X andR are implicit functions ofP, which is reflec-

tive of the feedback flow in Fig. 2, so (3) must be calculated
using an analytic queueing solver [See e.g., 10, 15]. Here,
however, we are mostly interested in performance bounds
rather than the full performance characteristics. One such
bound is the maximum achievable throughput

1

Xma:v(P) - D
mazx

(4)

which is controlled by the bottleneck latency.

Another throughput bound is due t®ynchronous
gueueing where alP processors suspend execution and is-
sue a request message simultaneously. Then, the laiency



to traverse the interconnect is the product of the mean time
D that it takes to route each message and the total number
of message® in transit i.e.,R(P) = PD. Substituting

into (3) produces

P

Xoyn(P) = 5p 57

©)
Although this bound is known in queueing theory [15],
its connection with Amdahl’s law, which we derive next,
seems not to have been recognized previously.

3 Fixed Size Bounds

An empirical measure of parallel performance is the
speedupatio
T
== 6
T, (6)

whereTp is the elapsed time oR processors. The elapsed
time T is equivalent to the execution tin¥§ on a unipro-
cessor. The remaining tim€p can then be reduced by
partitioning the application acrog3 processors running in
parallel. Symbolically,

S(P)

T
Th=TandTp=0T+(1—-0)=

5

Substituting (7) into (6) and simplifying produces Am-
dahl's law [19]

P

i )

8

for a fixed size workload with the percentage of time spent
in uniprocessor mode expressed in terms of a single pa-
rameter §), known as theserial fraction having range:

0 < o < 1. In the infinite processor limit, the speedup

(8) becomes

lim S4(P) =
ag

— 00

9)

This limit can be interpreted as the best achievable speedup
wheno~! processors are running 100% busy. For exam-
ple, if the serial fractiornr = 0.10 then the speedup limit
corresponds t@0 saturated processors.

A more physically revealing form of Amdahl’s law
can be written in terms of the message-exchange diagrams
shown in Fig. 3. Then, (8) can be re-expressed as the differ-
ence between ideal linear speedup and an associated inter-
processor messaging overhead

Su(P,k) =P —G(P,k)P(P—1). (10)

Here,k = 1/0, and the cost of inter-processor messaging

GP k)= — 1

“EPoD -

corresponds to th&-th term of aharmonic seriegsee Ta-
ble 2) and is depicted by the arrows in Fig. 3. Af= 4

571

Oo—»0O
1(k+1)

O<+—=0O
1/(k+1)
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Figure 3. Pictorial representation of Amdahl's law for P
=2, 3, and 4 processors (vertices) where each arrow repre-
sents the direction of the current communication cycle with
rational overhead = 1/k

1/ I(k+2)

1/(k+3)

Table 2. Amdahl cost functio@'( P) expressed in terms of
the parametek and the serial fraction

P 1 2 3 4 5
T T T T T
Gu(P) % ®E me 3 S
G,(P) o Ttoc 1+2; 1+3c 1tdo

and the serial fractior = 1/7, then both (8) and (10) pre-
dict a speedup of 4 (4) = 2.80 where the second term in
(10) corresponds to the 4-node diagrams in the last row of
Fig. 3.

Equation (10) can also be interpreted as a kind
of broadcastinteraction where the requesting processor
causes every other processor to halt execution and listen
to the message [8]. The processors then respond cyclicly in
the same way. Although the broadcast cost in Table 2 for a
single processak(1) is non-zero under this interpretation,
the total overhead in (10) is zero due to (e — 1) factor
in the second term. The broadcast interpretation does not
represent arefficientinteraction, only a logicallycorrect
interaction associated with Amdahl’'s law. Next, we show
that (8) and (10) have a related physical interpretation un-
der the MRM model.

To see this connection, let

D
g =
D+Z7

such that the range ofvalues is determined by MRM vari-
ablesD andZ

(12)

0 asD — 0, Z = const.
g —

(13)
1 asZ — 0, D = const.

Wheno = 0 the interconnect latenc® is zero because
there is maximal execution timg with no messages ex-
changed between processors. Consequently, there cannot
be any queueing contention in Fig. 2. Conversely:= 1



corresponds to zero execution time and maximal queueing
latency on the communication network.
Substituting (12) into (8) produces

P(D+ Z)
PD+Z

which can be interpreted immediately in terms of the syn-
chronous throughput (5). Amdahl speedup (14) is the ra-
tio of the synchronous throughput with processors to the
synchronous throughput on a singlB (= 1) processor.
See Appendix A for the complete derivation. Amdahl’s law
therefore corresponds to worst-case queueing in our MRM
model. Itis the speedup bound for synchronous messaging,
which can also be regarded as the queueing analog of the
broadcast protocol defined by (10). Once again, we are not
trying to identify the most efficient messaging protocol but
rather, the correct dynamics expressed by Amdahl’s law.

Sa(P) = (14)

4 Harmonic Bounds

Although Amdahl’s law constitutes the worst-case queue-
ing bound in MRM parlance, even lower bounds on
speedup do exist [5, 6]. For the sake of completeness, we
briefly consider how they can be interpreted within the con-
text of the MRM model.

If the workload is equally likely to make use of any
subset of processors (equipartitioning), the speedup be-

comes
P

Sy(P) =
u(P) 1+i+1+... 4
Since the harmonic series in the denominator can be ap-
proximated by

(15)

|
> = ~In(P), (16)
n=1 n
an upper bound on the equipartitioned speedup is
P

From the standpoint of MRMSy has to be viewed as a
worse than worst casgpeedup boundSly < S4) as evi-
denced so graphically in Fig. 4. Benchmark measurements
that conform to (17) are likely to be a signal that serious
performance tuning is required, although exceptions can
arise e.g., a Divide-and-Conquer algorithm might produce
this kind of speedup characteristic where the logarithm in
(17) is expressed in base-2.

If, instead of the harmonic sum (16) afl possible
processing subsets, we consider klz@monic mean. g,
of two extreme subsets of processors

L)
pa, 2\P1 P

whereP; = « is a CPU-saturated subset of the entire par-
allel setP, = P, then

(18)

2kP

= 19
HH2 Kt P ( )
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Figure 4. Speedup bounds fer= 0.01. S4 is the syn-
chronous speedup, the harmonic mean (20) is superim-
posed on the same cuny is the asynchronous speedup,
S¢ the near-linear scaled speedup and the lowest ctigve

is the equipartitioned speedup (17)

Replacing the constartwith the inverse of the serial frac-
tion o, we find that (19) is related to (8) by

1
Sa(P) >~ - pm2

; (20)

In other words, the asynchronous Amdahl bound is ex-
tremely well approximated (to within 1% error in Fig. 4)
by half the harmonic mean of the maximally parallel and
maximally saturated processor subsets.

This connection between Amdahl’s law and harmonic
bounds (17) and (19) is discussed in [5, Chap. 8] and [6,
Chap. 3] but otherwise seems not to be widely known. The
MRM model makes it clear via the appropriate choice of
parameter mappings (Fig. 7).

5 Scaled Size Bounds

It has been recognized for some time that predicting paral-
lel speedup for real problems can differ from that predicted
by Amdahl’s law because the percentage of timegpent
in sequential sections of the program can depend on the size
of the problem. Scaling up the problem size can improve
speedup as follows.

If the serial fraction is assumed to vary linearly with
P, the speedup (6) becomes

T _o+(1—-0o)P
S(P)_ﬁ_ o+ (1—-o0) (1)
which simplifies to
Sqg(P)=P+o(l—P) (22)

By analogy with Sect. 3, (22) is sometimes referred to as
theGustafson-Baris laj11] which has been demonstrated
for certain parallel applications [12].



The relationship to the MRM model is easily deter-
mined by substituting (12) into (22) to produce

D+ PZ
Sa(P)= 5 (23)
If we invoke the change of MRM variablé — 7’/ P, (23)
becomes
P(D+2')

PD+ 7'
which is identical to (14). See Appendix B for the deriva-
tion. Once again, we have arrived at a well-known para-
metric performance model by identifying the correct set of
variables in the unifying MRM model (see Fig. 7).

The MRM interpretation of Gustafson’s law (22) is
that rescaling offsets the impact of the synchronous queue-
ing by inflating the mean execution tim# in direct pro-
portion to the number of processofs In other words,
rescaling the problem size minimizes message traffic on the
network.

Sa(P) = (24)

6 Erlang Model

The near-linear speedups implied by (22) are generally ex-
tremely difficult to achieve in practice. Based on the MRM
analysis of Sect. 3, a more attainable compromise would be
asynchronous messaging. The asynchronous speedup can
be determined from this queueing formula

ser) =2 {1-5a (0 0)) 9
g g
whereEg (A, P) is the Erlang B function [10]
AP
Ep(A,P) = =" —¢ (26)
k=0 kT

with A = Z/D the service ratiofor Fig. 2. We have used
the definition ofo in (12) to rewrite the service ratio as
A= (1-0)/oin(25).

The factorl — Ep in (25) is the probability that the
interconnect network is busy. It is usually more convenient
to compute (26) using the following recursive algorithm:

erlangB = A/ (1 + A);
for (k = 2; k <= P; k++) {

erlangB *= A / (A * erlangB + K);
}

which accumulates the result in the variabtéangB

The idea that asynchronous speedup effects can be
predicted using (25) seems to be entirely novel and is a
direct consequence of realizing thef (P) in Sect. 3 de-
scribes the synchronous MRM dynamics of Fig. 2. A com-
parison ofSg andS 4 is provided in Fig. 4 for a serial frac-
tion of o = 0.01. It is noteworthy that, althouglg offers
greater speedup due to asynchronous messaging, the infi-
nite processor asymptofg,, = 100 is reached at a smaller
configuration of physical processor® (< 128) than for
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S 4. The reason for this can easily be explained in terms of
MRM gqueueing effects (Fig. 7).

From Sect. 354 is associated with the lower bound
on the normalized throughput due to maximal synchronous
gueueing in the network. Under light messaging loads
(P < 64 in Fig. 4), the speedup is essentially linear ris-
ing because the asynchronous messaging due to each addi-
tional processor creates relatively little queueing contention
in the network. However, at some poitit ¢ 128 in Fig. 4)
the network saturates (i.e., reach68% busy routing mes-
sages) and becomes the bottleneck.

In Sect. 2 the bottleneck was identified wiih,,

(the longest of the routing times forkastage interconnect)
because it controls the maximum available throughput by
virtue of (4). Any messages coming from faster routers
upstream simply make the bottleneck queue longer, while
faster downstream routers remain underutilized waiting for
completions at the bottleneck. In Fig. B,,,.. iS associ-
ated with the normalized throughput becoming bounded at
Soo = 100.

7 LogP Model

LogP [4] is a latency model rather than a speedup model.
Unlike the single parameter speedup models we have dis-
cussed so far, LogP has four parameters which can be mea-
sured directly [14]. Because of the correspondence be-
tween Figs. 1 and 2, however, the mapping between the
original LogP parameters and the MRM variables of Sect. 2
is the most direct of all and can be summarized as follows:

L Latency — DorR
o Overhead — Z,,;,/2
g Generate +— Z/P

P Processors — P

LogP = 27)

Taken collectively, these parameters (which also annotate
Fig. 1) give this latency model its name.

Although LogP intrinsically involves asynchronous
messaging, the original formulation of the model [4] had
no communication contention i.e., no queueilig-& D)
in MRM parlance. Taking as an example the measured
nNnCUBE2 parameters reported in [4], with message size
M = 160 bits, channel widtH? = 1 bit, mean routing
hopsH = 5, mean network latency, = 360 cycles and
g = 20 = 6400 cycles, the minimum round trip time is

RITin =L+ g = 6,700 Cycles (28)
This is equivalent to the MRM response time
Z
R=D+ - 29
+3 (29)

with zero contention i.e.P? = 1 where it is assumed that
there can be no more than one outstanding message per
processor in transit. Moreover, since we kn®vand Z

from (29), we can apply (12) to estimate that the serial
contention isc = 0.0274 for the nCUBE2. Surprisingly,



even though LogP is traditionally used as a latency model
we can assess its speedup characteristics using the MRM
mappings in Fig. 7.

MRM can provide deeper insight into LogP con-
tention effects but, as noted in Sect. 2, with multiple queue-
ing stages representing a multi-hop network we need to use
an analytic queueing solver [See e.g., 10] since each stage
could have different service timds;, (cf. Table 1). With
such tools we can predict the full latency characteristics for
the nCUBE2 in Fig. 5 withk = 5 hops.

160000 ~

140000 | ——R (Z=12.8K)
—{R (Z=64K)
o 1200007 —A—R (2=128K)
% 100000 -
>
)
- 80000 +
Q
C
O 60000 q
]
©
- 40000 -
20000 - /
0 T T T T |
0 128 256 384 512 640 768 896 1024
Number of Processors
Figure 5. Latency characteristics computed using the

MRM generalization of the LogP model of nCUBE2.

The lowest latency curve (bottom) corresponds to a
mean execution time of = 128,000 cycles, while the
highest latency curve (top) correspondszte= 12, 800 cy-
cles; the longer execution time producing fewer messages.
Even for the latter case, however, tR&T grows from 360
cycles atP = 1 to almost 36,000 cycles under contention
from P = 1024 processors. The ability to overlap mes-
sages could significantly reduce this contention.

In MRM, theoptimal processor configuratios asso-
ciated with the knee in the classic “hockey stick” character-
istic; like those shown in Fig. 5. That knee can be predicted

from
D+ 7

Dmax

the ratio of the minimumRT'T to the bottleneck latency
(see Sect. 2). Mapping the MRM variables back to the
LogP model, we find (30) corresponds to

L+ 20
[
which is the ratio of the minimunk7'T" in (28) to the bi-
section bandwidth [4]. For the nCUBE2 configurations in
Fig. 5, Pyt (Z = 12.8K) = 81, P,,+(Z = 64K) = 401,
andP,,.(Z = 128K) = 801 processors, respectively; well
below theP = 1024 available.

Extensions to LogP such as LogGP accounting for
longer messages [1], the inclusion of memory models [3],
and applications to MPI [2, 14] can also be included as ex-
tensions to MRM but we do not pursue them here.

Popt = (30)

(1)
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8 Speedup Measurements

In this section, we compare the MRM model predictions
with published benchmark measurements. Figure 4 shows
the relationship between the various speedup models with
o chosen to be 1% producing an asymptoté&at = 100

for clarity. Both the synchronous speedsip in (14) and

the asynchronous speed8p in (25) approach this asymp-
tote but at different rates. Asynchronous messaging pro-
vides better speedup belal¥ ~ 100 but saturates more
rapidly than synchronous messaging.

50 | ———-S_synch
""" S_async
45 1 B S_mpich
40
35
s
3 30 .
8 -
a 25 4 T
20 o
15 T
ol e
51 ..7'"
o ¥ ‘
0 16 32 48 64

Number of Processors

(a) nCUBE2 speedup measurements and predictions.

———-S_synch
""" S_async
45 1 W S_mpich

Speedup
\\
\

Number of Processors

(b) Paragon speedup measurements and predictions.

Figure 6. Comparison of speedup measurements with
MRM predictions for (a) the nCUBE2 and (b) the Intel
Paragon.

Speedup measurements using a Jacobian solver
benchmark [16] are plotted for the nCUBE2 in Fig. 6(a)
and for the Intel paragon in Fig. 6(b) running th#ICH
implementation of MPI. We used statistical regression anal-
ysis to estimate the respective parameters and found
& = 0.0181 for the nCUBE2 andr = 0.0105 for the Intel



Paragon. The predicted speedup curves were then calcu-
lated using (8) for the synchronous case, and (25) for the
asynchronous bound.

Clearly, the nCUBE2 benchmark data fall mostly in
the synchronous curve. The measured speedup adheres
closely to Amdabhl’s law which implies that there is signif-
icant contention on the interconnect network (Sect. 3). We
are unable to determine the cause of that contention from
the published data. Conversely, the measured speedup may
be the best that can be achieved on that generation of hyper-
cube topology running theLLPACK benchmark workload.
Those details notwithstanding, data of this type suggests
that further investigation for performance tuning opportu-
nities is likely to be worthwhile.

The Paragon benchmark data reveals a subtlety differ-
ent behavior. For configurations with < 8 processors, la-
tencies on the mesh topology [18] are relatively small and
the speedup is almost linear. & = 16 processors and
above, however, messaging appears to become more syn-
chronized and, once again, the speedup falls onto the Am-
dahl bound.

9 Conclusion

Parametric models play an important role in analyzing the
performance of message-passing architectures but, as we
have tried to demonstrate in this paper, they should be
grounded in a physically meaningful dynamics to avoid in-
correct or inaccurate performance predictions. We have
shown elsewhere [9] the dangers of constructing unphys-
ical parametric models to assess multiprocessor scalability
because they can lead to anomalous performance predic-
tions for large-scale systems. Once properly defined and
understood, however, parametric models are often more
convenient to apply than complex queueing models or sim-
ulations.

That said, however, we should recognize that even a
physically meaningful parametric model suffers the intrin-
sic limitation that what makes it convenient also makes it
opaque. Benchmarks and regression analysis can be used
to determine the value of its parameters. If the estimated
parameter values and projected speedups are declared un-
satisfactory, it is not possible to use the parametric model
in reverse to determine precisely where the performance
problems lie in the measured system. Such information has
been lost within the modeling parameters. In that sense, the
convenience of parametric models is a one-way street.

The MRM framework defined in Sect. 2 provides a
unified physical interpretation for the parameters in each
of the models summarized in Fig. 7. The ability to rede-
fine a single ad hoc parameter in terms of several physical
variables underlies the power of the MRM approach and it
quickly narrows the search for available performance tun-
ing opportunities in actual systems. As far as we know,
this has not been achieved before. Finally, we note that
MRM can provide insight into sizing buffers. Although
buffering can introduce longer latencies than may be de-
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L<R
o<—17

2 “min

g<—Z/P

Figure 7. Mappings between MRM variables and paramet-
ric model parameters.

sirable for many scientific and engineering applications,
it seems inevitable that buffering will play a more sig-
nificant role for general-purpose applications running on
newer computational architectures such as distributed clus-
ters and GRIDs [13].
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Appendices
We derive the Amdahl bounfl4 (P) using the MRM vari-

ables defined in Section 2, and then we transform that result
into the linearized fornd(P) of Section 5.

A Derivation of S4(P)

Let the elapsed time on a uniprocessor be

Th=D+Z (A-1)
and on a multicomputer witlr physical processors
1—
TPZUT1+( PU)Tl (A-2)
From (6) the parallel speedup is
D+ 7
Sa(P) = A-3
= oo @z *Y
Substituting (12) into (A-3) and collecting terms
B D+Z
D+ P52 -3
_ P(D+2Z)
~ PD+Z (A-4)



which establishes the equivalence of (14) and (A-4).

B Derivation of S¢(P)

Rearranging (22) to read

S¢(P)=0c+P—0oP (B-1)
and substituting (12) into (B-1) we have
D D+ 7 D
P) = P -
S6(P) = 57 D7 "Dz
_ D+ PZ+ PD—-PD (B-2)

D+ 7

which, upon collecting terms, simplifies to (23). The rela-
tionship between (B-2) and (14) can be seen by rescaling
the execution tim& +— 2’/ P

D+ 7
D+ (Z'/P)
D+ 7
L(PD+2)

P(D+Z')

-~ PD+ 7 (B-3)

Se(P)

which has the same form as (A-4) and (14).
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